185 research outputs found

    SIGNCRYPTION ANALYZE

    Get PDF
    The aim of this paper is to provide an overview for the research that has been done so far in signcryption area. The paper also presents the extensions for the signcryption scheme and discusses the security in signcryption. The main contribution to this paper represents the implementation of the signcryption algorithm with the examples provided.ElGamal, elliptic curves, encryption, identity-based, proxy-signcryption, public key, ring-signcryption, RSA, signcryption

    Analysis and Improvement of Authenticatable Ring Signcryption Scheme

    Get PDF
    Ring signcryption is an anonymous signcryption which allows a user to anonymously signcrypt a message on behalf of a set of users including himself. In an ordinary ring signcryption scheme, even if a user of the ring generates a signcryption, he also cannot prove that the signcryption was produced by himself. In 2008, Zhang, Yang, Zhu, and Zhang solve the problem by introducing an identity-based authenticatable ring signcryption scheme (denoted as the ZYZZ scheme). In the ZYZZ scheme, the actual signcrypter can prove that the ciphertext is generated by himself, and the others cannot authenticate it. However, in this paper, we show that the ZYZZ scheme is not secure against chosen plaintext attacks. Furthermore, we propose an improved scheme that remedies the weakness of the ZYZZ scheme. The improved scheme has shorter ciphertext size than the ZYZZ scheme. We then prove that the improved scheme satisfies confidentiality, unforgeability, anonymity and authenticatability

    Anonymous ID Based Signcryption Scheme for Multiple Receivers

    Get PDF
    Anonymous signcryption is synonyms of ring signcryption which provides anonymity of the sender along with the advantages of signcryption. Multi receiver signcryption is suited for situation where a sender wants to send a message to multiple receivers in the confidential and authenticated way. This paper proposes an identity based anonymous signcryption scheme in multi-receiver setting. It also provides proofs of provable security of the proposed scheme under some computationally difficult problems

    nMIBAS: A Novel Multi-Receiver ID-Based Anonymous Signcryption with Decryption Fairness

    Get PDF
    Based on the ring signature technology, the multi-receiver ID-based anonymous signcryption (MIBAS) is proposed, and its goal is to protect the privacy of the sender or so-called signer. In an MIBAS scheme, every receiver can verify whether the sender is a member of a trusted group and thus ensure the reliability of the message source, but he could not get the real sender. However, MIBAS paid no attention to privacy of the receivers and has not taken the privacy of the receivers into account during its design. Our analyses show that there widely exist the receiver privacy exposure and decryption unfairness problems in the existing multi-receiver ID-based signcryption schemes. Motivated by these concerns, a new multi-receiver ID-based anonymous signcryption (nMIBAS) is proposed to protect the identity of the receivers. The nMIBAS scheme can not only solve the problem that the existing schemes cannot protect the privacy of receivers, but also meet the fairness of decryption to prevent the possible cheating behavior of the sender effectively. Analysis shows that this scheme is a secure and effective signcryption scheme

    On the security of Identity Based Ring Signcryption Schemes

    Get PDF
    Signcryption is a cryptographic primitive which offers authentication and confidentiality simultaneously with a cost lower than signing and encrypting the message independently. Ring signcryption enables a user to signcrypt a message along with the identities of a set of potential senders (that includes him) without revealing which user in the set has actually produced the signcryption. Thus a ring signcrypted message has anonymity in addition to authentication and confidentiality. Ring signcryption schemes have no group managers, no setup procedures, no revocation procedures and no coordination: any user can choose any set of users (ring), that includes himself and signcrypt any message by using his private and public key as well as other users (in the ring) public keys, without getting any approval or assistance from them. Ring Signcryption is useful for leaking trustworthy secrets in an anonymous, authenticated and confidential way. \medskip To the best of our knowledge, seven identity based ring signcryption schemes are reported in the literature. Two of them were already proved to be insecure in \cite{ZBSW08} and \cite{SSP09}. In this paper, we show that four among the remaining five schemes do not provide confidentiality, to be specific, two schemes are not secure against chosen plaintext attack and other two schemes do not provide adaptive chosen ciphertext security. We then propose a new scheme and formally prove the security of the new scheme in the random oracle model. A comparison of our scheme with the only existing correct scheme by Huang et al. shows that our scheme is much more efficient than the scheme by Huang et al

    ID-based Ring Signature and Proxy Ring Signature Schemes from Bilinear Pairings

    Get PDF
    In 2001, Rivest et al. firstly introduced the concept of ring signatures. A ring signature is a simplified group signature without any manager. It protects the anonymity of a signer. The first scheme proposed by Rivest et al. was based on RSA cryptosystem and certificate based public key setting. The first ring signature scheme based on DLP was proposed by Abe, Ohkubo, and Suzuki. Their scheme is also based on the general certificate-based public key setting too. In 2002, Zhang and Kim proposed a new ID-based ring signature scheme using pairings. Later Lin and Wu proposed a more efficient ID-based ring signature scheme. Both these schemes have some inconsistency in computational aspect. In this paper we propose a new ID-based ring signature scheme and a proxy ring signature scheme. Both the schemes are more efficient than existing one. These schemes also take care of the inconsistencies in above two schemes.Comment: Published with ePrint Archiv

    New Conditional Privacy-preserving Encryption Schemes in Communication Network

    Get PDF
    Nowadays the communication networks have acted as nearly the most important fundamental infrastructure in our human society. The basic service provided by the communication networks are like that provided by the ubiquitous public utilities. For example, the cable television network provides the distribution of information to its subscribers, which is much like the water or gas supply systems which distribute the commodities to citizens. The communication network also facilitates the development of many network-based applications such as industrial pipeline controlling in the industrial network, voice over long-term evolution (VoLTE) in the mobile network and mixture reality (MR) in the computer network, etc. Since the communication network plays such a vital role in almost every aspect of our life, undoubtedly, the information transmitted over it should be guarded properly. Roughly, such information can be categorized into either the communicated message or the sensitive information related to the users. Since we already got cryptographical tools, such as encryption schemes, to ensure the confidentiality of communicated messages, it is the sensitive personal information which should be paid special attentions to. Moreover, for the benefit of reducing the network burden in some instances, it may require that only communication information among legitimated users, such as streaming media service subscribers, can be stored and then relayed in the network. In this case, the network should be empowered with the capability to verify whether the transmitted message is exchanged between legitimated users without leaking the privacy of those users. Meanwhile, the intended receiver of a transmitted message should be able to identify the exact message sender for future communication. In order to cater to those requirements, we re-define a notion named conditional user privacy preservation. In this thesis, we investigate the problem how to preserve user conditional privacy in pubic key encryption schemes, which are used to secure the transmitted information in the communication networks. In fact, even the term conditional privacy preservation has appeared in existing works before, there still have great differences between our conditional privacy preservation definition and the one proposed before. For example, in our definition, we do not need a trusted third party (TTP) to help tracing the sender of a message. Besides, the verification of a given encrypted message can be done without any secret. In this thesis, we also introduce more desirable features to our redefined notion user conditional privacy preservation. In our second work, we consider not only the conditional privacy of the message sender but also that of the intended message receiver. This work presents a new encryption scheme which can be implemented in communication networks where there exists a blacklist containing a list of blocked communication channels, and each of them is established by a pair of sender and receiver. With this encryption scheme, a verifier can confirm whether one ciphertext is belonging to a legitimated communication channel without knowing the exact sender and receiver of that ciphertext. With our two previous works, for a given ciphertext, we ensure that no one except its intended receiver can identify the sender. However, the receiver of one message may behave dishonest when it tries to retrieve the real message sender, which incurs the problem that the receiver of a message might manipulate the origin of the message successfully for its own benefit. To tackle this problem, we present a novel encryption scheme in our third work. Apart from preserving user conditional privacy, this work also enforces the receiver to give a publicly verifiable proof so as to convince others that it is honest during the process of identifying the actual message sender. In our forth work, we show our special interest in the access control encryption, or ACE for short, and find this primitive can inherently achieve user conditional privacy preservation to some extent. we present a newly constructed ACE scheme in this work, and our scheme has advantages over existing ACE schemes in two aspects. Firstly, our ACE scheme is more reliable than existing ones since we utilize a distributed sanitizing algorithm and thus avoid the so called single point failure happened in ACE systems with only one sanitizer. Then, since the ciphertext and key size of our scheme is more compact than that of the existing ACE schemes, our scheme enjoys better scalability

    The Insecurity of Two Proxy Signcryption Schemes: Proxy Credential Forgery Attack and How to Prevent It

    Get PDF
    Securing different online e-business activities usually requires applying different cryptographic algorithms. The proxy signcryption algorithms are designed for applications such as online proxy auction or online proxy signatures on business contracts, which require a proxy agent to sign on confidential messages. This paper proposes a proxy credential forgery attack to two recent proxy signcryption schemes in the literature. Using the attack, a malicious proxy signer can create a fake proxy credential from his original credential to extend his signing power. Simple modifications to these two schemes are also provided in this paper to prevent the attack without adding too much computational complexity. In addition to the contribution of introducing a new type of attacks to signcryption schemes, the paper also points out that, while designing a secure proxy signcryption scheme, not only the unforgeability of proxy signatures is important, but also that of proxy credentials as well

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    The zheng-seberry public key cryptosystem and signcryption

    Get PDF
    In 1993 Zheng-Seberry presented a public key cryptosystem that was considered efficient and secure in the sense of indistinguishability of encryptions (IND) against an adaptively chosen ciphertext adversary (CCA2). This thesis shows the Zheng-Seberry scheme is not secure as a CCA2 adversary can break the scheme in the sense of IND. In 1998 Cramer-Shoup presented a scheme that was secure against an IND-CCA2 adversary and whose proof relied only on standard assumptions. This thesis modifies this proof and applies it to a modified version of the El-Gamal scheme. This resulted in a provably secure scheme relying on the Random Oracle (RO) model, which is more efficient than the original Cramer-Shoup scheme. Although the RO model assumption is needed for security of this new El-Gamal variant, it only relies on it in a minimal way
    • …
    corecore