8,461 research outputs found

    An Identity for Kernel Ridge Regression

    Full text link
    This paper derives an identity connecting the square loss of ridge regression in on-line mode with the loss of the retrospectively best regressor. Some corollaries about the properties of the cumulative loss of on-line ridge regression are also obtained.Comment: 35 pages; extended version of ALT 2010 paper (Proceedings of ALT 2010, LNCS 6331, Springer, 2010

    Adaptive Mantel Test for AssociationTesting in Imaging Genetics Data

    Full text link
    Mantel's test (MT) for association is conducted by testing the linear relationship of similarity of all pairs of subjects between two observational domains. Motivated by applications to neuroimaging and genetics data, and following the succes of shrinkage and kernel methods for prediction with high-dimensional data, we here introduce the adaptive Mantel test as an extension of the MT. By utilizing kernels and penalized similarity measures, the adaptive Mantel test is able to achieve higher statistical power relative to the classical MT in many settings. Furthermore, the adaptive Mantel test is designed to simultaneously test over multiple similarity measures such that the correct type I error rate under the null hypothesis is maintained without the need to directly adjust the significance threshold for multiple testing. The performance of the adaptive Mantel test is evaluated on simulated data, and is used to investigate associations between genetics markers related to Alzheimer's Disease and heatlhy brain physiology with data from a working memory study of 350 college students from Beijing Normal University

    Spectral Norm of Random Kernel Matrices with Applications to Privacy

    Get PDF
    Kernel methods are an extremely popular set of techniques used for many important machine learning and data analysis applications. In addition to having good practical performances, these methods are supported by a well-developed theory. Kernel methods use an implicit mapping of the input data into a high dimensional feature space defined by a kernel function, i.e., a function returning the inner product between the images of two data points in the feature space. Central to any kernel method is the kernel matrix, which is built by evaluating the kernel function on a given sample dataset. In this paper, we initiate the study of non-asymptotic spectral theory of random kernel matrices. These are n x n random matrices whose (i,j)th entry is obtained by evaluating the kernel function on xix_i and xjx_j, where x1,...,xnx_1,...,x_n are a set of n independent random high-dimensional vectors. Our main contribution is to obtain tight upper bounds on the spectral norm (largest eigenvalue) of random kernel matrices constructed by commonly used kernel functions based on polynomials and Gaussian radial basis. As an application of these results, we provide lower bounds on the distortion needed for releasing the coefficients of kernel ridge regression under attribute privacy, a general privacy notion which captures a large class of privacy definitions. Kernel ridge regression is standard method for performing non-parametric regression that regularly outperforms traditional regression approaches in various domains. Our privacy distortion lower bounds are the first for any kernel technique, and our analysis assumes realistic scenarios for the input, unlike all previous lower bounds for other release problems which only hold under very restrictive input settings.Comment: 16 pages, 1 Figur
    • …
    corecore