949 research outputs found

    Solutions for vehicular communications: a review

    Get PDF
    Vehicular networks experience a number of unique challenges due to the high mobility of vehicles and highly dynamic network topology, short contact durations, disruption intermittent connectivity, significant loss rates, node density, and frequent network fragmentation. All these issues have a profound impact on routing strategies in these networks. This paper gives an insight about available solutions on related literature for vehicular communications. It overviews and compares the most relevant approaches for data communication in these networks, discussing their influence on routing strategies. It intends to stimulate research and contribute to further advances in this rapidly evolving area where many key open issues that still remain to be addressed are identified.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of the Seventh Framework Programme of EU, in the framework of the Specific Joint Research Project VDTN

    A Multi-hop Mobile Networking Test-bed for Telematics

    Get PDF
    An onboard vehicle-to-vehicle multi-hop wireless networking system has been developed to test the realworld performance of telematics applications. The system targets emergency and safety messaging, traffic updates, audio/video streaming and commercial announcements. The test-bed includes a Differential GPS receiver, an IEEE 802.11a radio card modified to emulate the DSRC standard, a 1xRTT cellular-data connection, an onboard computer and audio-visual equipment. Vehicles exchange data directly or via intermediate vehicles using a multi-hop routing protocol. The focus of the test-bed is to (a) evaluate the feasibility of high-speed inter-vehicular networking, (b) characterize 5.8GHz signal propagation within a dynamic mobile ad hoc environment, and (c) develop routing protocols for highly mobile networks. The test-bed has been deployed across five vehicles and tested over 400 miles on the road

    Experimental Analysis of Multi-hop Routing in Vehicular Ad-hoc Networks

    Get PDF
    International audienceEvaluation of vehicular ad-hoc networks (VANETs) over real environments is still a remaining issue for most re- searchers. There are some works dealing with common 802.11 anal- ysis over real vehicular environments, which carry out performance tests to measure the quality of the communication channel and justify results according to physical and MAC conditions. There are only a few works regarding multi-hop experimentation in this field, and even less (if not none) testing multi-hop protocols. In this paper an integral VANET testbed is evaluated, using 802.11b and a multi-hop network managed by the Optimized Link State Routing protocol (OLSR). Up to four vehicles are used over urban and highway environments to study the VANET performance, and different metrics are used to analyse the results in terms of delay, bandwidth, packet loss and distance between nodes. Furthermore, a deeper analysis is carried out to study the route followed by packets end to end, which enables us to count the number of hops and detect the links where packets are lost. Because a routing protocol is used, results differ from traditional two-hop and static- route tests, presenting a more realistic study. OLSR is considered as a good reference point for the research community, although it is not the most suitable protocol for vehicular environments, as results show

    Content storage and retrieval mechanisms for vehicular delay-tolerant networks

    Get PDF
    Vehicular delay-tolerant networks (VDTNs) were proposed as a novel disruptive network concept based on the delay tolerant networking (DTN) paradigm. VDTN architecture uses vehicles to relay messages, enabling network connectivity in challenging scenarios. Due to intermittent connectivity, network nodes carry messages in their buffers, relaying them only when a proper contact opportunity occurs. Thus, the storage capacity and message retrieving of intermediate nodes directly affects the network performance. Therefore, efficient and robust caching and forwarding mechanisms are needed. This dissertation proposes a content storage and retrieval (CSR) solution for VDTN networks. This solution consists on storage and retrieval control labels, attached to every data bundle of aggregated network traffic. These labels define cacheable contents, and apply cachecontrol and forwarding restrictions on data bundles. The presented mechanisms gathered several contributions from cache based technologies such as Web cache schemes, ad-hoc and DTN networks. This solution is fully automated, providing a fast, safe, and reliable data transfer and storage management, while improves the applicability and performance of VDTN networks significantly. This work presents the performance evaluation and validation of CSR mechanisms through a VDTN testbed. Furthermore it presents several network performance evaluations and results using the well-known DTN routing protocols, Epidemic and Spray and Wait (including its binary variant). The comparison of the network behavior and performance on both protocols, with and without CSR mechanisms, proves that CSR mechanisms improve significantly the overall network performance

    Internet-wide geo-networking problem statement

    Get PDF
    This document describes the need of specifying Internet-wide location-aware forwarding protocol solutions that provide packet routing using geographical positions for packet transport

    Handover management in mobile WiMAX using adaptive cross-layer technique

    Get PDF
    The protocol type and the base station (BS) technology are the main communication media between the Vehicle to Infrastructure (V2I) communication in vehicular networks. During high speed vehicle movement, the best communication would be with a seamless handover (HO) delay in terms of lower packet loss and throughput. Many studies have focused on how to reduce the HO delay during lower speeds of the vehicle with data link (L2) and network (L3) layers protocol. However, this research studied the Transport Layer (L4) protocol mobile Stream Control Transmission Protocol (mSCTP) used as an optimal protocol in collaboration with the Location Manager (LM) and Domain Name Server (DNS). In addition, the BS technology that performs smooth HO employing an adaptive algorithm in L2 to perform the HO according to current vehicle speed was also included in the research. The methods derived from the combination of L4 and the BS technology methods produced an Adaptive Cross-Layer (ACL) design which is a mobility oriented handover management scheme that adapts the HO procedure among the protocol layers. The optimization has a better performance during HO as it is reduces scanning delay and diversity level as well as support transparent mobility among layers in terms of low packet loss and higher throughput. All of these metrics are capable of offering maximum flexibility and efficiency while allowing applications to refine the behaviour of the HO procedure. Besides that, evaluations were performed in various scenarios including different vehicle speeds and background traffic. The performance evaluation of the proposed ACL had approximately 30% improvement making it better than the other handover solutions

    Impact of content storage and retrieval mechanisms on the performance of vehicular delay-tolerant networks

    Get PDF
    “Copyright © [2010] IEEE. Reprinted from 18th International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2010). ISBN: 978-1-4244-8663-2 . This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Vehicular Delay-Tolerant Networking (VDTN) is a new disruptive network architecture based on the concept of delay tolerant networks (DTNs). VDTNs handle non-real time applications using vehicles to carry messages on their buffers, relaying them only when a proper contact opportunity occurs. Therefore, the network performance is directly affected by the storage capacity and message retrieving of intermediate nodes. This paper proposes a suitable content storage and retrieval (CSR) mechanism for VDTN networks. This CSR solution adds additional information on control labels of the setup message associated to the corresponding data bundle (aggregated traffic) that defines and applies caching and forwarding restrictions on network traffic (data bundles). Furthermore, this work presents a performance analysis and evaluation of CSR mechanisms over a VDTN application scenario, using a VDTN testbed. This work presents the comparison of the network behavior and performance using two DTN routing protocols, Epidemic and Spray and Wait, with and without CSR mechanisms. The results show that CSR mechanisms improve the performance of VDTN networks significantly.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence from the Seventh Framework Programme of EU, in the framework of the Specific Joint Research Project VDTN

    VDTNsim: a simulation tool for vehicular delay-tolerant networks

    Get PDF
    “Copyright © [2010] IEEE. Reprinted from 15th IEEE International Workshop on Computer-Aided Modeling Analysis and Design of Communication Links and Networks.(IEEE CAMAD 2010) ISBN:978-1-4244-7634-3. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Developing an adequate network architecture for supporting data communications in vehicular networks is critical to overcome the challenges caused by highly dynamic network topology, connectivity disruption, and intermittent connectivity issues. Among several approaches available in the literature proposed to address these problems, vehicular delay-tolerant networking (VDTN) architecture appears as a recent and innovative solution that integrates the concepts of end-to-end, asynchronous, and variable-length bundle oriented communication; Internet protocol over VDTN; and out-of-band signaling. VDTN architecture, protocols and services are in a fairly early stage of development. Therefore, simulation appears as an important tool providing a highly flexible, low-cost, and fast answer for research questions, and furnishes important inputs for exploring through prototyping. This paper presents and describes the proposal and construction of a simulation tool for VDTN networks, called VDTNsim.Part of this work has been supported by Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of the Seventh Framework Programme of EU, in the framework of the Specific Joint Research Project VDTN
    corecore