508 research outputs found

    UML as a system level design methodology with application to software radio

    Get PDF
    Master'sMASTER OF SCIENC

    Cycle Accurate Simulation Model Generation for SoC Prototyping

    Get PDF
    RR 2004-18, ENS-Lyon, 24 pagesWe present new results concerning the integration of high level designed ips into a complete System on Chip. We first introduce a new compu- tation model that can be used for cycle accurate simulation of register transfer level synthesized hardware. Then we provide simulation of a SoC integrating a data-flow ip synthesized with MMAlpha and the So- cLib cycle accurate simulation environment. This integration also vali- dates an efficient generic interface mechanism for data-flow ips

    DESIGN AUTOMATION FOR LOW POWER RFID TAGS

    Get PDF
    Radio Frequency Identification (RFID) tags are small, wireless devices capable of automated item identification, used in a variety of applications including supply chain management, asset management, automatic toll collection (EZ Pass), etc. However, the design of these types of custom systems using the traditional methods can take months for a hardware engineer to develop and debug. In this dissertation, an automated, low-power flow for the design of RFID tags has been developed, implemented and validated. This dissertation presents the RFID Compiler, which permits high-level design entry using a simple description of the desired primitives and their behavior in ANSI-C. The compiler has different back-ends capable of targeting microprocessor-based or custom hardware-based tags. For the hardware-based tag, the back-end automatically converts the user-supplied behavior in C to low power synthesizable VHDL optimized for RFID applications. The compiler also integrates a fast, high-level power macromodeling flow, which can be used to generate power estimates within 15% accuracy of industry CAD tools and to optimize the primitives and / or the behaviors, compared to conventional practices. Using the RFID Compiler, the user can develop the entire design in a matter of days or weeks. The compiler has been used to implement standards such as ANSI, ISO 18000-7, 18000-6C and 18185-7. The automatically generated tag designs were validated by targeting microprocessors such as the AD Chips EISC and FPGAs such as Xilinx Spartan 3. The corresponding ASIC implementation is comparable to the conventionally designed commercial tags in terms of the energy and area. Thus, the RFID Compiler permits the design of power efficient, custom RFID tags by a wider audience with a dramatically reduced design cycle

    Virtual Cycle-accurate Hardware and Software Co-simulation Platform for Cellular IoT

    Get PDF
    Modern embedded development flows often depend on FPGA board usage for pre-ASIC system verification. The purpose of this project is to instead explore the usage of Electronic System Level (ESL) hardware-software co-simulation through the usage of ARM SoC Designer tool to create a virtual prototype of a cellular IoT modem and thereafter compare the benefits of including such a methodology into the early development cycle. The virtual system is completely developed and executed on a host computer, without the requirement of additional hardware. The virtual prototype hardware is based on C++ ARM verified cycle-accurate models generated from RTL hardware descriptions, High-level synthesis (HLS) pre-synthesis SystemC HW accelerator models and behavioural models which implement the ARM Cycle-accurate Simulation Interface (CASI). The micro-controller of the virtual system which is based on an ARM Cortex-M processor, is capable of executing instructions from a memory module. This report documents the virtual prototype implementation and compares both the software performance and cycle-accuracy of various virtual micro-controller configurations to a commercial reference development board. By altering factors such as memory latencies and bus interconnect subsystem arbitration in co-simulations, the software cycle-count performance of the development board was shown possible to reproduce within a 5% error margin, at the cost of approximately 266 times slower execution speed. Furthermore, the validity of two HLS pre-synthesis hardware models is investigated and proven to be functionally accurate within three clock cycles of individual block latency compared to post-synthesis FPGA synthesized implementations. The final virtual prototype system consisted of the micro-controller and two cellular IoT hardware accelerators. The system runs a FreeRTOS 9.0.0 port, executing a multi-threaded program at an average clock cycle simulation frequency of 10.6 kHz.-Designing and simulating embedded computer systems virtually. Cellular internet of things (IoT) is a new technology that will enable the interconnection of everything: from street lights and parking meters to your gas or water meter at home, wireless cellular networks will allow information to be shared between devices. However, in order for these systems to provide any useful data, they need to include a computer chip with a system to manage the communication itself, enabling the connection to a cellular network and the actual transmission and reception of data. Such a chip is called an embedded chip or system. Traditionally, the design and verification of digital embedded systems, that is to say a system which has both hardware and software components, had to be done in two steps. The first step consists of designing all the hardware, testing it, integrating it and producing it physically on silicon in order to verify the intended functionality of all the components. The second step thus consists of taking the hardware that has been developed and designing the software: a program which will have to execute in complete compliance to the hardware that has been previously developed. This poses two main issues: the software engineers cannot begin their work properly until the hardware is finished, which makes the process very long, and the fact that the hardware has been printed on silicon greatly restricts the possibility of doing changes to accommodate late system requirement alterations; which is quite likely for a tailor-made application specific system such as a cellular IoT chip. A currently widespread technology used to mitigate the previously mentioned negative aspects of embedded design, is the employment of field-programmable gate array (FPGA) development boards which often contain a micro-controller (with a processor and some memories), and a gate array connected to it. The FPGA part consists of a lattice of digital logic gates which can be programmed to interconnect and represent the functionality of the hardware being designed. The processor can thus execute software instructions placed on the memories and the hardware being developed can be programmed into the gate array in order to integrate and verify a full hardware and software system. Nevertheless, this boards are expensive and limit the design to the hardware components available commercially in the different off-the-shelf models, e.g. a specific processor which might not be the desired one. Now imagine there is a way to design hardware components such as processors in the traditional way, however once the hardware has been implemented it can be integrated together with software without the need of printing a physical silicon chip specifically for this purpose. That would be extremely convenient and would save lots of time, would it not? Fortunately, this is already possible due to Electronic System Level (ESL) design, which is compilation of techniques that allow to design, simulate and partially verify a digital chip, all within any normal laptop or desktop computer. Moreover, some ESL tools such as the one investigated in this project, allow you to even simulate a program code written specifically for this hardware; this is known as virtual hardware software co-simulation. The reliability of simulation must however be considered when compared to a traditional two-step methodology or FPGA board usage to verify a full system. This is because a virtual hardware simulation can have several degrees of accuracy, depending on the specificity of component models that make up the virtual prototype of the digital system. Therefore, in order to use co-simulation techniques with a high degree of confidence for verification, the highest accuracy degree should be employed if possible to guarantee that what is being simulated will match the reality of a silicon implementation. The clock cycle-accurate level is one of the highest accuracy system simulation methods available, and it consists of representing the digital states of all hardware components such as signals and registers, in a cycle-by-cycle manner. By using the ARM SoC Designer ESL tool, we have co-designed and co-simulated several microcontrollers on a detailed, cycle-accurate level and confirmed its behaviour by comparing it to a physical reference target development board. Finally, a more complex virtual prototype of a cellular IoT system was also simulated, including a micro-controller running a a real-time operating system (RTOS), hardware accelerators and serial data interfacing. Parts of this virtual prototype where compared to an FPGA board to evaluate the pros and cons of incorporating virtual system simulation into the development cycle and to what extent can ESL methods substitute traditional verification techniques. The ease of interchanging hardware, simplicity of development, simulation speed and the level of debug capabilities available when developing in a virtual environment are some of the aspects of ARM SoC Designer discussed in this thesis. A more in depth description of the methodology and results can be found in the report titled "Virtual Cycle-accurate Hardware and Software Co-simulation Platform for Cellular IoT"

    FSMD-Based Hardware Accelerators for FPGAs

    Get PDF
    Current VLSI technology allows the design of sophisticated digital systems with escalated demands in performance and power/energy consumption. The annual increase of chip complexity is 58%, while human designers productivity increase is limited to 21 % per annum (ITRS, 2011). The growing technology-productivity gap is probably the most importan

    On mixed abstraction, languages and simulation approach to refinement with SystemC AMS

    Get PDF
    Executable specifications and simulations arecornerstone to system design flows. Complex mixed signalembedded systems can be specified with SystemC AMSwhich supports abstraction and extensible models of computation. The language contains semantics for moduleconnections and synchronization required in analog anddigital interaction. Through the synchronization layer, user defined models of computation, solvers and simulators can be unified in the SystemC AMS simulator for achieving low level abstraction and model refinement. These improvements assist in amplifying model aspects and their contribution to the overall system behavior. This work presents cosimulating refined models with timed data flow paradigm of SystemC AMS. The methodology uses Cbased interaction between simulators. An RTL model ofdata encryption standard is demonstrated as an example.The methodology is flexible and can be applied in earlydesign decision trade off, architecture experimentation and particularly for model refinement and critical behavior analysis

    Advances in Architectures and Tools for FPGAs and their Impact on the Design of Complex Systems for Particle Physics

    Get PDF
    The continual improvement of semiconductor technology has provided rapid advancements in device frequency and density. Designers of electronics systems for high-energy physics (HEP) have benefited from these advancements, transitioning many designs from fixed-function ASICs to more flexible FPGA-based platforms. Today’s FPGA devices provide a significantly higher amount of resources than those available during the initial Large Hadron Collider design phase. To take advantage of the capabilities of future FPGAs in the next generation of HEP experiments, designers must not only anticipate further improvements in FPGA hardware, but must also adopt design tools and methodologies that can scale along with that hardware. In this paper, we outline the major trends in FPGA hardware, describe the design challenges these trends will present to developers of HEP electronics, and discuss a range of techniques that can be adopted to overcome these challenges
    corecore