4,433 research outputs found

    A generalisation of the nonlinear small-gain theorem for systems with abstract initial conditions

    No full text
    We consider the development of a general nonlinear small-gain theorem for systems with abstract initial conditions. Systems are defined in a set theoretic manner from input-output pairs on a doubly infinite time axis, and a general construction of the initial conditions (i.e. a state at time zero) is given in terms of an equivalence class of trajectories on the negative time axis. By using this formulation, an ISS-type nonlinear small-gain theorem is established with complete disconnection between the stability property and the existence, uniqueness properties. We provide an illustrative example

    Energy efficient hybrid satellite terrestrial 5G networks with software defined features

    Get PDF
    In order to improve the manageability and adaptability of future 5G wireless networks, the software orchestration mechanism, named software defined networking (SDN) with Control and User plane (C/U-plane) decoupling, has become one of the most promising key techniques. Based on these features, the hybrid satellite terrestrial network is expected to support flexible and customized resource scheduling for both massive machinetype- communication (MTC) and high-quality multimedia requests while achieving broader global coverage, larger capacity and lower power consumption. In this paper, an end-to-end hybrid satellite terrestrial network is proposed and the performance metrics, e. g., coverage probability, spectral and energy efficiency (SE and EE), are analysed in both sparse networks and ultra-dense networks. The fundamental relationship between SE and EE is investigated, considering the overhead costs, fronthaul of the gateway (GW), density of small cells (SCs) and multiple quality-ofservice (QoS) requirements. Numerical results show that compared with current LTE networks, the hybrid system with C/U split can achieve approximately 40% and 80% EE improvement in sparse and ultra-dense networks respectively, and greatly enhance the coverage. Various resource management schemes, bandwidth allocation methods, and on-off approaches are compared, and the applications of the satellite in future 5G networks with software defined features are proposed

    Massive MIMO Performance - TDD Versus FDD: What Do Measurements Say?

    Full text link
    Downlink beamforming in Massive MIMO either relies on uplink pilot measurements - exploiting reciprocity and TDD operation, or on the use of a predetermined grid of beams with user equipments reporting their preferred beams, mostly in FDD operation. Massive MIMO in its originally conceived form uses the first strategy, with uplink pilots, whereas there is currently significant commercial interest in the second, grid-of-beams. It has been analytically shown that in isotropic scattering (independent Rayleigh fading) the first approach outperforms the second. Nevertheless there remains controversy regarding their relative performance in practice. In this contribution, the performances of these two strategies are compared using measured channel data at 2.6 GHz.Comment: Submitted to IEEE Transactions on Wireless Communications, 31/Mar/201

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF

    STAR-IOS Aided NOMA Networks: Channel Model Approximation and Performance Analysis

    Get PDF
    Simultaneous transmitting and reflecting intelligent omini-surfaces (STAR-IOSs) are able to achieve full coverage "smart radio environments". By splitting the energy or altering the active number of STAR-IOS elements, STAR-IOSs provide high flexibility of successive interference cancellation (SIC) orders for non-orthogonal multiple access (NOMA) systems. Based on the aforementioned advantages, this paper investigates a STAR-IOS-aided downlink NOMA network with randomly deployed users. We first propose three tractable channel models for different application scenarios, namely the central limit model, the curve fitting model, and the M-fold convolution model. More specifically, the central limit model fits the scenarios with large-size STAR-IOSs while the curve fitting model is extended to evaluate multi-cell networks. However, these two models cannot obtain accurate diversity orders. Hence, we figure out the M-fold convolution model to derive accurate diversity orders. We consider three protocols for STAR-IOSs, namely, the energy splitting (ES) protocol, the time switching (TS) protocol, and the mode switching (MS) protocol. Based on the ES protocol, we derive analytical outage probability expressions for the paired NOMA users by the central limit model and the curve fitting model. Based on three STAR-IOS protocols, we derive the diversity gains of NOMA users by the M-fold convolution model. The analytical results reveal that the diversity gain of NOMA users is equal to the active number of STAR-IOS elements. Numerical results indicate that 1) in high signal-to-noise ratio regions, the central limit model performs as an upper bound, while a lower bound is obtained by the curve fitting model; 2) the TS protocol has the best performance but requesting more time blocks than other protocols; 3) the ES protocol outperforms the MS protocol as the ES protocol has higher diversity gains

    Underactuated Source Seeking by Surge Force Tuning: Theory and Boat Experiments

    Full text link
    We extend source seeking algorithms, in the absence of position and velocity measurements, and with tuning of the surge input, from velocity-actuated (unicycle) kinematic models to force-actuated generic Euler-Lagrange dynamic underactuated models. In the design and analysis, we employ a symmetric product approximation, averaging, passivity, and partial-state stability theory. The proposed control law requires only real-time measurement of the source signal at the current position of the vehicle and ensures semi-global practical uniform asymptotic stability (SPUAS) with respect to the linear motion coordinates for the closed-loop system. The performance of our source seeker with surge force tuning is illustrated with both numerical simulations and experiments of an underactuated boat
    corecore