21 research outputs found

    WiDEVIEW: An UltraWideBand and Vision Dataset for Deciphering Pedestrian-Vehicle Interactions

    Full text link
    Robust and accurate tracking and localization of road users like pedestrians and cyclists is crucial to ensure safe and effective navigation of Autonomous Vehicles (AVs), particularly so in urban driving scenarios with complex vehicle-pedestrian interactions. Existing datasets that are useful to investigate vehicle-pedestrian interactions are mostly image-centric and thus vulnerable to vision failures. In this paper, we investigate Ultra-wideband (UWB) as an additional modality for road users' localization to enable a better understanding of vehicle-pedestrian interactions. We present WiDEVIEW, the first multimodal dataset that integrates LiDAR, three RGB cameras, GPS/IMU, and UWB sensors for capturing vehicle-pedestrian interactions in an urban autonomous driving scenario. Ground truth image annotations are provided in the form of 2D bounding boxes and the dataset is evaluated on standard 2D object detection and tracking algorithms. The feasibility of UWB is evaluated for typical traffic scenarios in both line-of-sight and non-line-of-sight conditions using LiDAR as ground truth. We establish that UWB range data has comparable accuracy with LiDAR with an error of 0.19 meters and reliable anchor-tag range data for up to 40 meters in line-of-sight conditions. UWB performance for non-line-of-sight conditions is subjective to the nature of the obstruction (trees vs. buildings). Further, we provide a qualitative analysis of UWB performance for scenarios susceptible to intermittent vision failures. The dataset can be downloaded via https://github.com/unmannedlab/UWB_Dataset

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    Decentralized Collaborative Localization Using Ultra-Wideband Ranging

    Get PDF
    This thesis summarizes the development of a collaborative localization algorithm simulation environment and the implementation of collaborative localization using Ultra-Wideband ranging in autonomous vehicles. In the developed simulation environment, multi-vehicle scenarios are testable with various sensor combinations and configurations. The simulation emulates the networking required for collaborative localization and serves as a platform for evaluating algorithm performance using Monte Carlo analysis. Monte-Carlo simulations were run using a number of situations and vehicles to test the efficacy of UWB sensors in decentralized collaborative localization as well as landmark measurements within an extended Kalman filter. Improvements from adding Ultra-Wideband ranging were shown in all simulated environments, with landmarks offering additional improvements to collaborative localization, and with the most significant accuracy improvements seen in GNSS-denied environments. Physical experiments were run using a by-wire GEM e6 from Autonomous Stuff in an urban environment in both collaborative and landmark setups. Due to higher than expected INS certainty, adding UWB measurements showed smaller improvements than simulations. Improvements of 9.2 to 12.1% were shown through the introduction of Ultra-Wideband ranging measurements in a decentralized collaborative localization algorithm. Improvements of 30.6 to 83.3% were shown in using UWB ranging measurements to landmarks in an Extended Kalman Filter for street crossing and tunnel environments respectively. These results are similar to the simulated data, and are promising in showing the efficacy of adding UWB ranging sensors to cars for collaborative and landmark localization, especially in GNSS-denied environments. In the future, additional moving vehicles with additional tags will be tested and further evaluations of the UWB ranging modules will be performed

    DEVELOPMENT OF AN AUTONOMOUS NAVIGATION SYSTEM FOR THE SHUTTLE CAR IN UNDERGROUND ROOM & PILLAR COAL MINES

    Get PDF
    In recent years, autonomous solutions in the multi-disciplinary field of the mining engineering have been an extremely popular applied research topic. The growing demand for mineral supplies combined with the steady decline in the available surface reserves has driven the mining industry to mine deeper underground deposits. These deposits are difficult to access, and the environment may be hazardous to mine personnel (e.g., increased heat, difficult ventilation conditions, etc.). Moreover, current mining methods expose the miners to numerous occupational hazards such as working in the proximity of heavy mining equipment, possible roof falls, as well as noise and dust. As a result, the mining industry, in its efforts to modernize and advance its methods and techniques, is one of the many industries that has turned to autonomous systems. Vehicle automation in such complex working environments can play a critical role in improving worker safety and mine productivity. One of the most time-consuming tasks of the mining cycle is the transportation of the extracted ore from the face to the main haulage facility or to surface processing facilities. Although conveyor belts have long been the autonomous transportation means of choice, there are still many cases where a discrete transportation system is needed to transport materials from the face to the main haulage system. The current dissertation presents the development of a navigation system for an autonomous shuttle car (ASC) in underground room and pillar coal mines. By introducing autonomous shuttle cars, the operator can be relocated from the dusty, noisy, and potentially dangerous environment of the underground mine to the safer location of a control room. This dissertation focuses on the development and testing of an autonomous navigation system for an underground room and pillar coal mine. A simplified relative localization system which determines the location of the vehicle relatively to salient features derived from on-board 2D LiDAR scans was developed for a semi-autonomous laboratory-scale shuttle car prototype. This simplified relative localization system is heavily dependent on and at the same time leverages the room and pillar geometry. Instead of keeping track of a global position of the vehicle relatively to a fixed coordinates frame, the proposed custom localization technique requires information regarding only the immediate surroundings. The followed approach enables the prototype to navigate around the pillars in real-time using a deterministic Finite-State Machine which models the behavior of the vehicle in the room and pillar mine with only a few states. Also, a user centered GUI has been developed that allows for a human user to control and monitor the autonomous vehicle by implementing the proposed navigation system. Experimental tests have been conducted in a mock mine in order to evaluate the performance of the developed system. A number of different scenarios simulating common missions that a shuttle car needs to undertake in a room and pillar mine. The results show a minimum success ratio of 70%

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Study, Measurements and Characterisation of a 5G system using a Mobile Network Operator Testbed

    Get PDF
    The goals for 5G are aggressive. It promises to deliver enhanced end-user experience by offering new applications and services through gigabit speeds, and significantly improved performance and reliability. The enhanced mobile broadband (eMBB) 5G use case, for instance, targets peak data rates as high as 20 Gbps in the downlink (DL) and 10 Gbps in the uplink (UL). While there are different ways to improve data rates, spectrum is at the core of enabling higher mobile broadband data rates. 5G New Radio (NR) specifies new frequency bands below 6 GHz and also extends into mmWave frequencies where more contiguous bandwidth is available for sending lots of data. However, at mmWave frequencies, signals are more susceptible to impairments. Hence, extra consideration is needed to determine test approaches that provide the precision required to accurately evaluate 5G components and devices. Therefore, the aim of the thesis is to provide a deep dive into 5G technology, explore its testing and validation, and thereafter present the OTE (Hellenic Telecommunications Organisation) 5G testbed, including measurement results obtained and its characterisation based on key performance indicators (KPIs)

    A framework for the synergistic integration of fully autonomous ground vehicles with smart city

    Get PDF
    Most of the vehicle manufacturers aim to deploy level-5 fully autonomous ground vehicles (FAGVs) on city roads in 2021 by leveraging extensive existing knowledge about sensors, actuators, telematics and Artificial Intelligence (AI) gained from the level-3 and level-4 autonomy. FAGVs by executing non-trivial sequences of events with decimetre-level accuracy live in Smart City (SC) and their integration with all the SC components and domains using real-time data analytics is urgent to establish better swarm intelligent systems and a safer and optimised harmonious smart environment enabling cooperative FAGVs-SC automation systems. The challenges of urbanisation, if unmet urgently, would entail severe economic and environmental impacts. The integration of FAGVs with SC helps improve the sustainability of a city and the functional and efficient deployment of hand over wheels on robotized city roads with behaviour coordination. SC can enable the exploitation of the full potential of FAGVs with embedded centralised systems within SC with highly distributed systems in a concept of Automation of Everything (AoE). This paper proposes a synergistic integrated FAGV-SC holistic framework - FAGVinSCF in which all the components of SC and FAGVs involving recent and impending technological advancements are moulded to make the transformation from today's driving society to future's next-generation driverless society smoother and truly make self-driving technology a harmonious part of our cities with sustainable urban development. Based on FAGVinSCF, a simulation platform is built both to model the varying penetration levels of FAGV into mixed traffic and to perform the optimal self-driving behaviours of FAGV swarms. The results show that FAGVinSCF improves the urban traffic flow significantly without huge changes to the traffic infrastructure. With this framework, the concept of Cooperative Intelligent Transportation Systems (C-ITS) is transformed into the concept of Automated ITS (A-ITS). Cities currently designed for cars can turn into cities developed for citizens using FAGVinSCF enabling more sustainable cities

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot
    corecore