57 research outputs found

    A Hardware Security Solution against Scan-Based Attacks

    Get PDF
    Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage for integrated circuits. The scan technique provides full access to the internal nodes of the device-under-test to control them or observe their response to input test vectors. While such comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is subject to exploitation by various attacks. In this work, new methods are presented to protect the security of critical information against scan-based attacks. In the proposed methods, access to the circuit containing secret information via the scan chain has been severely limited in order to reduce the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a countermeasure against side channel attacks with a low area overhead as compared to the existing solutions in literature

    IEEE Std 1149.7: What, Why, Where?

    Get PDF
    The IEEE Std 1149.7 holds the promise of greatimprovements for testing electronic circuits, when used alongwith other IEEE standards (particularly those that use the IEEEStd 1149.1 for test access and control). In this paper we describewhat is the IEEE Std 1149.7, the reasons why we mayconsider to use it instead of IEEE Std 1149.1, and we highlightthe application spectrum where this new standard can beuseful

    Test Planning and Test Access Mechanism Design for 3D SICs

    Get PDF
    In this paper we propose a scheme for test planning and test access mechanism (TAM) design for stacked integrated circuits (SICs) that are designed in a core-based manner. Our scheme minimizes the test cost, which is given as the weighted sum of the test time and the TAM width. The test cost is evaluated for a test flow that consists of a wafer sort test of each individual chip and a package test of the complete stack of chips. We use an Integer Linear Programming (ILP) model to find the optimal test cost. The ILP model is implemented on several designs constructed from ITC’02 benchmarks. The experimental results show significant reduction in test cost compared to when using schemes, which are optimized for non-stacked chips

    Reduced pin-count testing, 3D SICs, time division multiplexing, test access mechanism, simultaneous bidirectional signaling

    Get PDF
    3D Stacked Integrated Circuits (SICs) offer a promising way to cope with the technology scaling; however, the test access requirements are highly complicated due to increased transistor density and a limited number of test channels. Moreover, although the vertical interconnects in 3D SIC are capable of high-speed data transfer, the overall test speed is restricted by scan-chains that are not optimized for timing. Reduced Pin-Count Testing (RPCT) has been effectively used under these scenarios. In particular, Time Division Multiplexing (TDM) allows full utilization of interconnect bandwidth while providing low scan frequencies supported by the scan chains. However, these methods rely on Uni-Directional Signaling (UDS), in which a chip terminal (pin or a TSV) can either be used to transmit or receive data at a given time. This requires that at least two chip terminals are available at every die interface (Tester-Die or Die-Die) to form a single test channel. In this paper, we propose Simultaneous Bi-Directional Signaling (SBS), which allows a chip terminal to be used simultaneously to send and receive data, thus forming a test channel using one pin instead of two. We demonstrate how SBS can be used in conjunction with TDM to achieve reduced pin count testing while using only half the number of pins compared to conventional TDM based methods, consuming only 22.6% additional power. Alternatively, the advantage could be manifested as a test time reduction by utilizing all available test channels, allowing more parallelism and test time reduction down to half compared to UDS-based TDM. Experiments using 45nm technology suggest that the proposed method can operate at up to 1.2 GHz test clock for a stack of 3-dies, whereas for higher frequencies, a binary-weighted transmitter is proposed capable of up to 2.46 GHz test clock

    Access Time Analysis for IEEE P1687

    Full text link
    • …
    corecore