19,290 research outputs found

    On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems

    Get PDF
    Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors.This research was partly supported by iLand (EU ARTEMIS-1-00026) granted by the ARTEMIS JUand the Spanish Ministry of Industry, Commerce and Tourism. It has also been partly funded by the REM4VSS (TIN2011-28339) project grant of the Spanish Ministry of Economy and Competitiveness and by Universidad Carlos III de Madrid. The authors would also like to mention the large development team of the iLand reference implementation that performed an outstanding role to achieve a software proven also on commercial applications, and they thank them for their valuable efforts and work.Publicad

    Rationale and Architecture Principles for Medical Application Platforms

    Get PDF
    The concept of “system of systems” architecture is increasingly prevalent in many critical domains. Such systems allow information to be pulled from a variety of sources, analyzed to discover correlations and trends, stored to enable realtime and post-hoc assessment, mined to better inform decisionmaking, and leveraged to automate control of system units. In contrast, medical devices typically have been developed as monolithic stand-alone units. However, a vision is emerging of a notion of a medical application platform (MAP) that would provide device and health information systems (HIS) interoperability, safety critical network middleware, and an execution environment for clinical applications (“apps”) that offer numerous advantages for safety and effectiveness in health care delivery. In this paper, we present the clinical safety/effectiveness and economic motivations for MAPs, and describe key characteristics of MAPs that are guiding the search for appropriate technology, regulatory, and ecosystem solutions. We give an overview of the Integrated Clinical Environment (ICE) – one particular achitecture for MAPs, and the Medical Device Coordination Framework – a prototype implementation of the ICE architecture

    IRS II: a framework and infrastructure for semantic web services

    Get PDF
    In this paper we describe IRS–II (Internet Reasoning Service) a framework and implemented infrastructure, whose main goal is to support the publication, location, composition and execution of heterogeneous web services, augmented with semantic descriptions of their functionalities. IRS–II has three main classes of features which distinguish it from other work on semantic web services. Firstly, it supports one-click publishing of standalone software: IRS–II automatically creates the appropriate wrappers, given pointers to the standalone code. Secondly, it explicitly distinguishes between tasks (what to do) and methods (how to achieve tasks) and as a result supports capability-driven service invocation; flexible mappings between services and problem specifications; and dynamic, knowledge-based service selection. Finally, IRS–II services are web service compatible – standard web services can be trivially published through the IRS–II and any IRS–II service automatically appears as a standard web service to other web service infrastructures. In the paper we illustrate the main functionalities of IRS–II through a scenario involving a distributed application in the healthcare domain

    Protecting Interoperable Clinical Environment With Authentication

    Get PDF
    The Integrated Clinical Environment (ICE) is a standard dedicated to promote open coordination of heterogeneous medical devices in a plug-and-play manner. This carries the potential to radically improve medical care through coordinating, cooperating devices, but also to undermine the patient safety by giving rise to security vulnerabilities in the cyber world. In this paper, we propose an authentication framework as the first step to build an ICE security architecture. This framework is designed in a three-layered structure, allowing it to fit in the variety of authentication requirements from different ICE entities and of networking middleware from ICE instantiations. We implement the authentication framework on OpenICE, an open source ICE instantiation. Our experiments shows that the framework can help OpenICE mitigate the vulnerabilities caused by forged identity with negligible performance overload

    Requirement Engineering for Functional Alarm System for Interoperable Medical Devices

    Get PDF
    This paper addresses the problem of high-assurance operation for medical cyber-physical systems built from interoperable medical devices. Such systems are diferent from most cyber-physical systems due to their plug-and-play nature: they are assembled as needed at a patient\u27s bedside according to a specification that captures the clinical scenario and required device types. We need to ensure that such a system is assembled correctly and operates according to its specification. In this regard, we aim to develop an alarm system that would signal interoperability failures. We study how plug-and-play interoperable medical devices and systems can fail by means of hazard analysis that identify hazardous situations that are unique to interoperable systems. The requirements for the alarm system are formulated as the need to detect these hazardous situations. We instantiate the alarm requirement generation process through a case-study involving an interoperable medical device setup for airway-laser surgery

    Towards Assurance for Plug & Play Medical Systems

    Get PDF
    Traditional safety-critical systems are designed and integrated by a systems integrator. The system integrator can asses the safety of the completed system before it is deployed. In medicine, there is a desire to transition from the traditional approach to a new model wherein a user can combine various devices post-hoc to create a new composite system that addresses a specific clinical scenario. Ensuring the safety of these systems is challenging: Safety is a property of systems that arises from the interaction of system components and it’s not possible to asses overall system safety by assessing a single component in isolation. It is unlikely that end-users will have the engineering expertise or resources to perform safety assessments each time they create a new composite system. In this paper we describe a platform-oriented approach to providing assurance for plug & play medical systems as well as an associated assurance argument pattern

    Reversal of aging-induced increases in aortic stiffness by targeting cytoskeletal protein-protein interfaces

    Get PDF
    BACKGROUND: The proximal aorta normally functions as a critical shock absorber that protects small downstream vessels from damage by pressure and flow pulsatility generated by the heart during systole. This shock absorber function is impaired with age because of aortic stiffening. METHODS AND RESULTS: We examined the contribution of common genetic variation to aortic stiffness in humans by interrogating results from the AortaGen Consortium genome‐wide association study of carotid‐femoral pulse wave velocity. Common genetic variation in the N‐WASP (WASL) locus is associated with carotid‐femoral pulse wave velocity (rs600420, P=0.0051). Thus, we tested the hypothesis that decoy proteins designed to disrupt the interaction of cytoskeletal proteins such as N‐WASP with its binding partners in the vascular smooth muscle cytoskeleton could decrease ex vivo stiffness of aortas from a mouse model of aging. A synthetic decoy peptide construct of N‐WASP significantly reduced activated stiffness in ex vivo aortas of aged mice. Two other cytoskeletal constructs targeted to VASP and talin‐vinculin interfaces similarly decreased aging‐induced ex vivo active stiffness by on‐target specific actions. Furthermore, packaging these decoy peptides into microbubbles enables the peptides to be ultrasound‐targeted to the wall of the proximal aorta to attenuate ex vivo active stiffness. CONCLUSIONS: We conclude that decoy peptides targeted to vascular smooth muscle cytoskeletal protein‐protein interfaces and microbubble packaged can decrease aortic stiffness ex vivo. Our results provide proof of concept at the ex vivo level that decoy peptides targeted to cytoskeletal protein‐protein interfaces may lead to substantive dynamic modulation of aortic stiffness.Published versio
    • 

    corecore