798 research outputs found

    Supporting disconnected operations in mobile computing

    Full text link
    Mobile computing has enabled users to seamlessly access databases even when they are on the move. However, in the absence of readily available high-quality communication, users are often forced to operate disconnected from the network. As a result, software applications have to be redesigned to take advantage of this environment while accommodating the new challenges posed by mobility. In particular, there is a need for replication and synchronization services in order to guarantee availability of data and functionality, (including updates) in disconnected mode. To this end we propose a scalable and highly available data replication and management service. The proposed replication technique is compared with a baseline replication technique and shown to exhibit high availability, fault tolerance and minimal access times of the data and services, which are very important in an environment with low-quality communication links.<br /

    FEW : file management for portable devices

    Get PDF
    Comunicação apresentada ao International Workshop on Software Support for Portable Storage (IWSSPS), San Francisco, 2005.In recent years, an increasing number of portable devices with large amounts of storage have become widely used. In this paper, we present the early design of the FEW system, a system that aims to ease file management in the new mobile environment. To this end, the system will manage file replicas stored in fixed and portable storage devices. It will provide an automatic mechanism to establish new file replicas by analyzing file system activity. The system will automatically and incrementally synchronize all file replicas exploring the available network connectivity and the availability of portable storage devices. To merge concurrent updates, operational transformation techniques will be used.FCT/MCES POSI/FEDER - Project #59064/2004

    Model-driven dual caching For nomadic service-oriented architecture clients

    Get PDF
    Mobile devices have evolved over the years from resource constrained devices that supported only the most basic tasks to powerful handheld computing devices. However, the most significant step in the evolution of mobile devices was the introduction of wireless connectivity which enabled them to host applications that require internet connectivity such as email, web browsers and maybe most importantly smart/rich clients. Being able to host smart clients allows the users of mobile devices to seamlessly access the Information Technology (IT) resources of their organizations. One increasingly popular way of enabling access to IT resources is by using Web Services (WS). This trend has been aided by the rapid availability of WS packages/tools, most notably the efforts of the Apache group and Integrated Development Environment (IDE) vendors. But the widespread use of WS raises questions for users of mobile devices such as laptops or PDAs; how and if they can participate in WS. Unlike their “wired” counterparts (desktop computers and servers) they rely on a wireless network that is characterized by low bandwidth and unreliable connectivity.The aim of this thesis is to enable mobile devices to host Web Services consumers. It introduces a Model-Driven Dual Caching (MDDC) approach to overcome problems arising from temporarily loss of connectivity and fluctuations in bandwidth

    Review of Some Transaction Models used in Mobile Databases

    Get PDF
    Mobile computing is presently experiencing a period of unprecedented growth with the convergence of communication and computing capabilities of mobile phones and personal digital assistant. However, mobile computing presents many inherent problems that lead to poor network connectivity. To overcome poor connectivity and reduce cost, mobile clients are forced to operate in disconnected and partially connected modes. One of the main goals of mobile data access is to reach the ubiquity inherent to the mobile systems: to access information regardless of time and place. Due to mobile systems restrictions such as, for instance, limited memory and narrow bandwidth, it is only natural that researchers expend efforts to soothe such issues. This work approaches the issues regarding the cache management in mobile databases, with emphasis in techniques to reduce cache faults while the mobile device is either connected, or with a narrow bandwidth, or disconnected at all. Thus, it is expected improve data availability while a disconnection. Here in the paper, we try to describe various mobile transaction models, focusing on versatile data sharing mechanisms in volatile mobile environments

    Review of Some Transaction Models used in Mobile Databases

    Get PDF
    Mobile computing is presently experiencing a period of unprecedented growth with the convergence of communication and computing capabilities of mobile phones and personal digital assistant. However, mobile computing presents many inherent problems that lead to poor network connectivity. To overcome poor connectivity and reduce cost, mobile clients are forced to operate in disconnected and partially connected modes. One of the main goals of mobile data access is to reach the ubiquity inherent to the mobile systems: to access information regardless of time and place. Due to mobile systems restrictions such as, for instance, limited memory and narrow bandwidth, it is only natural that researchers expend efforts to soothe such issues. This work approaches the issues regarding the cache management in mobile databases, with emphasis in techniques to reduce cache faults while the mobile device is either connected, or with a narrow bandwidth, or disconnected at all. Thus, it is expected improve data availability while a disconnection. Here in the paper, we try to describe various mobile transaction models, focusing on versatile data sharing mechanisms in volatile mobile environments

    User-activity aware strategies for mobile information access

    Get PDF
    Information access suffers tremendously in wireless networks because of the low correlation between content transferred across low-bandwidth wireless links and actual data used to serve user requests. As a result, conventional content access mechanisms face such problems as unnecessary bandwidth consumption and large response times, and users experience significant performance degradation. In this dissertation, we analyze the cause of those problems and find that the major reason for inefficient information access in wireless networks is the absence of any user-activity awareness in current mechanisms. To solve these problems, we propose three user-activity aware strategies for mobile information access. Through simulations and implementations, we show that our strategies can outperform conventional information access schemes in terms of bandwidth consumption and user-perceived response times.Ph.D.Committee Chair: Raghupathy Sivakumar; Committee Member: Chuanyi Ji; Committee Member: George Riley; Committee Member: Magnus Egerstedt; Committee Member: Umakishore Ramachandra

    Contention management for distributed data replication

    Get PDF
    PhD ThesisOptimistic replication schemes provide distributed applications with access to shared data at lower latencies and greater availability. This is achieved by allowing clients to replicate shared data and execute actions locally. A consequence of this scheme raises issues regarding shared data consistency. Sometimes an action executed by a client may result in shared data that may conflict and, as a consequence, may conflict with subsequent actions that are caused by the conflicting action. This requires a client to rollback to the action that caused the conflicting data, and to execute some exception handling. This can be achieved by relying on the application layer to either ignore or handle shared data inconsistencies when they are discovered during the reconciliation phase of an optimistic protocol. Inconsistency of shared data has an impact on the causality relationship across client actions. In protocol design, it is desirable to preserve the property of causality between different actions occurring across a distributed application. Without application level knowledge, we assume an action causes all the subsequent actions at the same client. With application knowledge, we can significantly ease the protocol burden of provisioning causal ordering, as we can identify which actions do not cause other actions (even if they precede them). This, in turn, makes possible the client’s ability to rollback to past actions and to change them, without having to alter subsequent actions. Unfortunately, increased instances of application level causal relations between actions lead to a significant overhead in protocol. Therefore, minimizing the rollback associated with conflicting actions, while preserving causality, is seen as desirable for lower exception handling in the application layer. In this thesis, we present a framework that utilizes causality to create a scheduler that can inform a contention management scheme to reduce the rollback associated with the conflicting access of shared data. Our framework uses a backoff contention management scheme to provide causality preserving for those optimistic replication systems with high causality requirements, without the need for application layer knowledge. We present experiments which demonstrate that our framework reduces clients’ rollback and, more importantly, that the overall throughput of the system is improved when the contention management is used with applications that require causality to be preserved across all actions

    A cache framework for nomadic clients of web services

    Get PDF
    This research explores the problems associated with caching of SOAP Web Service request/response pairs, and presents a domain independent framework enabling transparent caching of Web Service requests for mobile clients. The framework intercepts method calls intended for the web service and proceeds by buffering and caching of the outgoing method call and the inbound responses. This enables a mobile application to seamlessly use Web Services by masking fluctuations in network conditions. This framework addresses two main issues, firstly how to enrich the WS standards to enable caching and secondly how to maintain consistency for state dependent Web Service request/response pairs

    Based on MIPv6 with Support to Improve the Mobile Commerce Transaction

    Get PDF
    Mobile Commerce is anticipated to be the next business revolution. Under the trend of mobile age, a person begins to realize the benefits of transaction by mobility operations. We can access information, shop and bank on line, work from home and speak and send messages via mobile appliances throughout all over the world. The research that is mobile transaction managing on database has begun since 1950 and skips the Link and Network Layer with support to improve mobile commerce. This paper focus on how effectually to make the new generation of mobile network protocol apply on mobile commerce and improve the mainly four properties required by mobile transactions. The four properties are respectively atomicity, consistency, isolation and durability. The purpose based on the mobile commerce environment and making mobile transactions complete and personal by means of the Destination Extension Header based on IPv6 and the Java Transaction Service. After experiment and testing, this paper verify that we improve the mobile commerce environment and make the mobile transaction more complete with the optimization of the Destination Extension Header based on IPv6 and the Java Transaction Service under the comparison with the environment on IPv4
    • …
    corecore