30,487 research outputs found

    Talos: Neutralizing Vulnerabilities with Security Workarounds for Rapid Response

    Full text link
    Considerable delays often exist between the discovery of a vulnerability and the issue of a patch. One way to mitigate this window of vulnerability is to use a configuration workaround, which prevents the vulnerable code from being executed at the cost of some lost functionality -- but only if one is available. Since program configurations are not specifically designed to mitigate software vulnerabilities, we find that they only cover 25.2% of vulnerabilities. To minimize patch delay vulnerabilities and address the limitations of configuration workarounds, we propose Security Workarounds for Rapid Response (SWRRs), which are designed to neutralize security vulnerabilities in a timely, secure, and unobtrusive manner. Similar to configuration workarounds, SWRRs neutralize vulnerabilities by preventing vulnerable code from being executed at the cost of some lost functionality. However, the key difference is that SWRRs use existing error-handling code within programs, which enables them to be mechanically inserted with minimal knowledge of the program and minimal developer effort. This allows SWRRs to achieve high coverage while still being fast and easy to deploy. We have designed and implemented Talos, a system that mechanically instruments SWRRs into a given program, and evaluate it on five popular Linux server programs. We run exploits against 11 real-world software vulnerabilities and show that SWRRs neutralize the vulnerabilities in all cases. Quantitative measurements on 320 SWRRs indicate that SWRRs instrumented by Talos can neutralize 75.1% of all potential vulnerabilities and incur a loss of functionality similar to configuration workarounds in 71.3% of those cases. Our overall conclusion is that automatically generated SWRRs can safely mitigate 2.1x more vulnerabilities, while only incurring a loss of functionality comparable to that of traditional configuration workarounds.Comment: Published in Proceedings of the 37th IEEE Symposium on Security and Privacy (Oakland 2016

    Impact Analysis of Malware Based on Call Network API with Heuristic Detection Method

    Get PDF
    Malware is a program that has a negative influence on computer systems that don\u27t have user permissions. The purpose of making malware by hackers is to get profits in an illegal way. Therefore, we need a malware analysis. Malware analysis aims to determine the specifics of malware so that security can be built to protect computer devices. One method for analyzing malware is heuristic detection. Heuristic detection is an analytical method that allows finding new types of malware in a file or application. Many malwares are made to attack through the internet because of technological advancements. Based on these conditions, the malware analysis is carried out using the API call network with the heuristic detection method. This aims to identify the behavior of malware that attacks the network. The results of the analysis carried out are that most malware is spyware, which is lurking user activity and retrieving user data without the user\u27s knowledge. In addition, there is also malware that is adware, which displays advertisements through pop-up windows on computer devices that interfaces with user activity. So that with these results, it can also be identified actions that can be taken by the user to protect his computer device, such as by installing antivirus or antimalware, not downloading unauthorized applications and not accessing unsafe websites. &nbsp

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Issues in Evaluating Health Department Web-Based Data Query Systems: Working Papers

    Get PDF
    Compiles papers on conceptual and methodological topics to consider in evaluating state health department systems that provide aggregate data online, such as taxonomy, logic models, indicators, and design. Includes surveys and examples of evaluations

    AndroShield:automated Android applications vulnerability detection, a hybrid static and dynamic analysis approach

    Get PDF
    The security of mobile applications has become a major research field which is associated with a lot of challenges. The high rate of developing mobile applications has resulted in less secure applications. This is due to what is called the “rush to release” as defined by Ponemon Institute. Security testing—which is considered one of the main phases of the development life cycle—is either not performed or given minimal time; hence, there is a need for security testing automation. One of the techniques used is Automated Vulnerability Detection. Vulnerability detection is one of the security tests that aims at pinpointing potential security leaks. Fixing those leaks results in protecting smart-phones and tablet mobile device users against attacks. This paper focuses on building a hybrid approach of static and dynamic analysis for detecting the vulnerabilities of Android applications. This approach is capsuled in a usable platform (web application) to make it easy to use for both public users and professional developers. Static analysis, on one hand, performs code analysis. It does not require running the application to detect vulnerabilities. Dynamic analysis, on the other hand, detects the vulnerabilities that are dependent on the run-time behaviour of the application and cannot be detected using static analysis. The model is evaluated against different applications with different security vulnerabilities. Compared with other detection platforms, our model detects information leaks as well as insecure network requests alongside other commonly detected flaws that harm users’ privacy. The code is available through a GitHub repository for public contribution

    Automated metamorphic testing on the analyses of feature models

    Get PDF
    Copyright © 2010 Elsevier B.V. All rights reserved.Context: A feature model (FM) represents the valid combinations of features in a domain. The automated extraction of information from FMs is a complex task that involves numerous analysis operations, techniques and tools. Current testing methods in this context are manual and rely on the ability of the tester to decide whether the output of an analysis is correct. However, this is acknowledged to be time-consuming, error-prone and in most cases infeasible due to the combinatorial complexity of the analyses, this is known as the oracle problem.Objective: In this paper, we propose using metamorphic testing to automate the generation of test data for feature model analysis tools overcoming the oracle problem. An automated test data generator is presented and evaluated to show the feasibility of our approach.Method: We present a set of relations (so-called metamorphic relations) between input FMs and the set of products they represent. Based on these relations and given a FM and its known set of products, a set of neighbouring FMs together with their corresponding set of products are automatically generated and used for testing multiple analyses. Complex FMs representing millions of products can be efficiently created by applying this process iteratively.Results: Our evaluation results using mutation testing and real faults reveal that most faults can be automatically detected within a few seconds. Two defects were found in FaMa and another two in SPLOT, two real tools for the automated analysis of feature models. Also, we show how our generator outperforms a related manual suite for the automated analysis of feature models and how this suite can be used to guide the automated generation of test cases obtaining important gains in efficiency.Conclusion: Our results show that the application of metamorphic testing in the domain of automated analysis of feature models is efficient and effective in detecting most faults in a few seconds without the need for a human oracle.This work has been partially supported by the European Commission(FEDER)and Spanish Government under CICYT project SETI(TIN2009-07366)and the Andalusian Government project ISABEL(TIC-2533)

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE
    corecore