123 research outputs found

    Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program

    Get PDF
    We describe the parallel implementation of our generalized stellar atmosphere and NLTE radiative transfer computer program PHOENIX. We discuss the parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. Our implementation uses a MIMD design based on a relatively small number of MPI library calls. We report the results of test calculations on a number of different parallel computers and discuss the results of scalability tests.Comment: To appear in ApJ, 1997, vol 483. LaTeX, 34 pages, 3 Figures, uses AASTeX macros and styles natbib.sty, and psfig.st

    Scalable Parallel Computers for Real-Time Signal Processing

    Get PDF
    We assess the state-of-the-art technology in massively parallel processors (MPPs) and their variations in different architectural platforms. Architectural and programming issues are identified in using MPPs for time-critical applications such as adaptive radar signal processing. We review the enabling technologies. These include high-performance CPU chips and system interconnects, distributed memory architectures, and various latency hiding mechanisms. We characterize the concept of scalability in three areas: resources, applications, and technology. Scalable performance attributes are analytically defined. Then we compare MPPs with symmetric multiprocessors (SMPs) and clusters of workstations (COWs). The purpose is to reveal their capabilities, limits, and effectiveness in signal processing. We evaluate the IBM SP2 at MHPCC, the Intel Paragon at SDSC, the Gray T3D at Gray Eagan Center, and the Gray T3E and ASCI TeraFLOP system proposed by Intel. On the software and programming side, we evaluate existing parallel programming environments, including the models, languages, compilers, software tools, and operating systems. Some guidelines for program parallelization are provided. We examine data-parallel, shared-variable, message-passing, and implicit programming models. Communication functions and their performance overhead are discussed. Available software tools and communication libraries are also introducedpublished_or_final_versio

    Irregular Coarse-Grain Data Parallelism under LPARX

    Get PDF

    ARTICLE NO. PC971367 A Library-Based Approach to Task Parallelism in a Data-Parallel Language

    Get PDF
    Pure data-parallel languages such as High Performance Fortran version 1 (HPF) do not allow efficient expression of mixed task/data-parallel computations or the coupling of separately compiled data-parallel modules. In this paper, we show how these common parallel program structures can be represented, with only minor extensions to the HPF model, by using a coordination library based on the Message Passing Interface (MPI). This library allows data-parallel tasks to exchange distributed data structures using calls to simple communication functions. We present microbenchmark results that characterize the performance of this library and that quantify the impact of optimizations that allow reuse of communication schedules in common situations. In addition, results from two-dimensional FFT, convolution, and multiblock programs demonstrate that the HPF/ MPI library can provide performance superior to that of pure HPF. We conclude that this synergistic combination of two parallel programming standards represents a useful approach to task parallelism in a data-parallel framework, increasing the range of problems addressable in HPF without requiring complex compile

    Java for parallel computing and as a general language for scientific and engineering simulation and modeling

    Get PDF
    We discuss the role of Java and Web technologies for general simulation. We classify the classes of concurrency typical in problems and analyze separately the role of Java in user interfaces, coarse grain software integration, and detailed computational kernels. We conclude that Java could become a major language for computational science, as it potentially offers good performance, excellent user interfaces, and the advantages of object-oriented structure

    Method for resource control in parallel environments using program organization and run-time support

    Get PDF
    A system and method for dynamic scheduling and allocation of resources to parallel applications during the course of their execution. By establishing well-defined interactions between an executing job and the parallel system, the system and method support dynamic reconfiguration of processor partitions, dynamic distribution and redistribution of data, communication among cooperating applications, and various other monitoring actions. The interactions occur only at specific points in the execution of the program where the aforementioned operations can be performed efficiently

    High-Performance Computing and Four-Dimensional Data Assimilation: The Impact on Future and Current Problems

    Get PDF
    This is the final technical report for the project entitled: "High-Performance Computing and Four-Dimensional Data Assimilation: The Impact on Future and Current Problems", funded at NPAC by the DAO at NASA/GSFC. First, the motivation for the project is given in the introductory section, followed by the executive summary of major accomplishments and the list of project-related publications. Detailed analysis and description of research results is given in subsequent chapters and in the Appendix

    Interoperability of Data Parallel Runtime Libraries with Meta-Chaos

    Get PDF
    This paper describes a framework for providing the ability to use multiple specialized data parallel libraries and/or languages within a single application. The ability to use multiple libraries is required in many application areas, such as multidisciplinary complex physical simulations and remote sensing image database applications. An application can consist of one program or multiple programs that use different libraries to parallelize operations on distributed data structures. The framework is embodied in a runtime library called Meta-Chaos that has been used to exchange data between data parallel programs written using High Performance Fortran, the Chaos and Multiblock Parti libraries developed at Maryland for handling various types of unstructured problems, and the runtime library for pC++, a data parallel version of C++ from Indiana University. Experimental results show that Meta-Chaos is able to move data between libraries efficiently, and that Meta-Chaos provides effective support for complex applications. (Also cross-referenced as UMIACS-TR-96-30
    corecore