73 research outputs found

    An entropy preserving relaxation scheme for ten-moments equations with source terms

    Get PDF
    International audienceThe present paper concerns the derivation of finite volume methods to approximate weak solutions of Ten-Moments equations with source terms. These equations model compressible anisotropic flows. A relaxation-type scheme is proposed to approximate such flows. Both robustness and stability conditions of the suggested finite volume methods are established. To prove discrete entropy inequalities, we derive a new strategy based on local minimum entropy principle and never use some approximate PDE's auxiliary model as usually recommended. Moreover, numerical simulations in 1D and in 2D illustrate our approach

    Coupling multi-fluid dynamics equipped with Landau closures to the particle-in-cell method

    Full text link
    The particle-in-cell (PIC) method is successfully used to study magnetized plasmas. However, this requires large computational costs and limits simulations to short physical run-times and often to setups in less than three spatial dimensions. Traditionally, this is circumvented either via hybrid-PIC methods (adopting massless electrons) or via magneto-hydrodynamic-PIC methods (modelling the background plasma as a single charge-neutral magneto-hydrodynamical fluid). Because both methods preclude modelling important plasma-kinetic effects, we introduce a new fluid-PIC code that couples a fully explicit and charge-conservative multi-fluid solver to the PIC code SHARP through a current-coupling scheme and solve the full set of Maxwell's equations. This avoids simplifications typically adopted for Ohm's Law and enables us to fully resolve the electron temporal and spatial scales while retaining the versatility of initializing any number of ion, electron, or neutral species with arbitrary velocity distributions. The fluid solver includes closures emulating Landau damping so that we can account for this important kinetic process in our fluid species. Our fluid-PIC code is second-order accurate in space and time. The code is successfully validated against several test problems, including the stability and accuracy of shocks and the dispersion relation and damping rates of waves in unmagnetized and magnetized plasmas. It also matches growth rates and saturation levels of the gyro-scale and intermediate-scale instabilities driven by drifting charged particles in magnetized thermal background plasmas in comparison to linear theory and PIC simulations. This new fluid-SHARP code is specially designed for studying high-energy cosmic rays interacting with thermal plasmas over macroscopic timescales.Comment: 35 pages, 11 figures, submitted to JPP. Comments are welcom

    Numerical methods for radiative and ideal relativistic hydrodynamics applied to the study of gamma-ray bursts

    Get PDF
    This thesis is devoted to the application of high-resolution numerical methods for relativistic hydrodynamics (RHD) to the study of gamma-ray bursts (GRBs), as well as to the development of new schemes able to describe radiative transfer in relativistic magnetized and unmagnetized flows. On one side, we have performed RHD simulations of relativistic plasma outbursts within the binary-driven hypernova model, developed throughout the last years in the International Center of Relativistic Astrophysics Network (ICRANet). This model is based on the so-called induced gravitational collapse scenario, proposed to explain the observed temporal coincidence of GRBs and supernovae (SN) of type Ic. This scenario considers a carbon-oxigen star (CO core) forming a tight binary system with a companion neutron star (NS). When the collapse of the CO core produces a type Ic SN, part of the ejected material is accreted by the NS, which in turn collapses and forms a black hole (BH). It has been proposed, although the details of this process are a matter of current research, that this collapse creates an optically thick electron-positron plasma around the BH that expands due to its own internal pressure and originates a GRB. Our work in this context has focused on the description of such expanding plasma and its interaction with the surrounding SN ejecta, for which we have followed a hydrodynamical approach using the open-source code PLUTO. This allowed us to study this process in high-density regions that had not been explored thus far, and to perform consistency checks of the model taking into account both theoretical and observational constraints such as the system’s size, the initial plasma energy, the observed timing and the Lorentz factor of the outbursts. Three different scenarios are here considered: (I) the expansion of the plasma in low-density regions, proposed to produce most of the GRB emission in the prompt phase; (II) a model in which X-ray flares are produced due to the breakout of shocks created when the plasma interacts with high-density regions of the SN ejecta; and (III) a model for the emission of secondary bursts due to the creation of reflected waves caused by the same interaction. The second part of this thesis is devoted to the main part of our work, which consists in the development of a numerical code for radiative transfer integrated in PLUTO. Our implementation is able to solve the equations of relativistic radiation magnetohydrodynamics (Rad-RMHD) under the so-called M1 closure, which allows the radiation transport to be handled in both the free-streaming and diffusion limits. Since we use frequency-averaged opacities, this approach is unable to describe frequency-dependent phenomena; instead, the main focus is put on the transport of total energy and momentum. To avoid numerical instabilities arising due to the possibly large timescale disparity caused by the radiation–matter interaction terms, the Rad-RMHD equations are integrated following implicit–explicit (IMEX) schemes. In this way, interaction terms are integrated implicitly, whereas transport and all of the remaining source terms are solved explicitly by means of the same Godunov-type solvers included in PLUTO. Among these, we have introduced a new Harten–Lax–van Leer–contact (HLLC) solver for optically thin radiation transport. The code is suitable for multidimensional computations in Cartesian, spherical, and cylindrical coordinates using either a single processor or parallel architectures. Adaptive grid computations are also made possible by means of the CHOMBO library. We explain in this work the implementation of all of these methods, after which we show the code’s performance in several problems of radiative transfer in magnetized and unmagnetized flows. We pay particular attention to the behavior of the solutions in the free-streaming and diffusion limits, and show the efficiency and scalability properties of the code as compared with its usual nonradiative implementation. Finally, we show an application of this code to the mentioned model for X-ray flares

    Fornax: a Flexible Code for Multiphysics Astrophysical Simulations

    Full text link
    This paper describes the design and implementation of our new multi-group, multi-dimensional radiation hydrodynamics (RHD) code Fornax and provides a suite of code tests to validate its application in a wide range of physical regimes. Instead of focusing exclusively on tests of neutrino radiation hydrodynamics relevant to the core-collapse supernova problem for which Fornax is primarily intended, we present here classical and rigorous demonstrations of code performance relevant to a broad range of multi-dimensional hydrodynamic and multi-group radiation hydrodynamic problems. Our code solves the comoving-frame radiation moment equations using the M1 closure, utilizes conservative high-order reconstruction, employs semi-explicit matter and radiation transport via a high-order time stepping scheme, and is suitable for application to a wide range of astrophysical problems. To this end, we first describe the philosophy, algorithms, and methodologies of Fornax and then perform numerous stringent code tests, that collectively and vigorously exercise the code, demonstrate the excellent numerical fidelity with which it captures the many physical effects of radiation hydrodynamics, and show excellent strong scaling well above 100k MPI tasks.Comment: Accepted to the Astrophysical Journal Supplement Series; A few more textual and reference updates; As before, one additional code test include
    • …
    corecore