22,341 research outputs found

    COOPERATIVE AND CONSENSUS-BASED CONTROL FOR A TEAM OF MULTI-AGENT SYSTEMS

    Get PDF
    Cooperative control has attracted a noticeable interest in control systems community due to its numerous applications in areas such as formation flying of unmanned aerial vehicles, cooperative attitude control of spacecraft, rendezvous of mobile robots, unmanned underwater vehicles, traffic control, data network congestion control and routing. Generally, in any cooperative control of multi-agent systems one can find a set of locally sensed information, a communication network with limited bandwidth, a decision making algorithm, and a distributed computational capability. The ultimate goal of cooperative systems is to achieve consensus or synchronization throughout the team members while meeting all communication and computational constraints. The consensus problem involves convergence of outputs or states of all agents to a common value and it is more challenging when the agents are subjected to disturbances, measurement noise, model uncertainties or they are faulty. This dissertation deals with the above mentioned challenges and has developed methods to design distributed cooperative control and fault recovery strategies in multi-agent systems. Towards this end, we first proposed a transformation for Linear Time Invariant (LTI) multi-agent systems that facilitates a systematic control design procedure and make it possible to use powerful Lyapunov stability analysis tool to guarantee its consensus achievement. Moreover, Lyapunov stability analysis techniques for switched systems are investigated and a novel method is introduced which is well suited for designing consensus algorithms for switching topology multi-agent systems. This method also makes it possible to deal with disturbances with limited root mean square (RMS) intensities. In order to decrease controller design complexity, a iii method is presented which uses algebraic connectivity of the communication network to decouple augmented dynamics of the team into lower dimensional parts, which allows one to design the consensus algorithm based on the solution to an algebraic Riccati equation with the same order as that of agent. Although our proposed decoupling method is a powerful approach to reduce the complexity of the controller design, it is possible to apply classical pole placement methods to the transformed dynamics of the team to develop and obtain controller gains. The effects of actuator faults in consensus achievement of multi-agent systems is investigated. We proposed a framework to quantitatively study actuator loss-of-effectiveness effects in multi-agent systems. A fault index is defined based on information on fault severities of agents and communication network topology, and sufficient conditions for consensus achievement of the team are derived. It is shown that the stability of the cooperative controller is linked to the fault index. An optimization problem is formulated to minimize the team fault index that leads to improvements in the performance of the team. A numerical optimization algorithm is used to obtain the solutions to the optimal problem and based on the solutions a fault recovery strategy is proposed for both actuator saturation and loss-of-effectiveness fault types. Finally, to make our proposed methodology more suitable for real life scenarios, the consensus achievement of a multi-agent team in presence of measurement noise and model uncertainties is investigated. Towards this end, first a team of LTI agents with measurement noise is considered and an observer based consensus algorithm is proposed and shown that the team can achieve H∞ output consensus in presence of both bounded RMS disturbance input and measurement noise. In the next step a multi-agent team with both linear and Lipschitz nonlinearity uncertainties is studied and a cooperative control algorithm is developed. An observer based approach is also developed to tackle consensus achievement problem in presence of both measurement noise and model uncertainties

    Multi-Agent Cooperation for Particle Accelerator Control

    Get PDF
    We present practical investigations in a real industrial controls environment for justifying theoretical DAI (Distributed Artificial Intelligence) results, and we discuss theoretical aspects of practical investigations for accelerator control and operation. A generalized hypothesis is introduced, based on a unified view of control, monitoring, diagnosis, maintenance and repair tasks leading to a general method of cooperation for expert systems by exchanging hypotheses. This has been tested for task and result sharing cooperation scenarios. Generalized hypotheses also allow us to treat the repetitive diagnosis-recovery cycle as task sharing cooperation. Problems with such a loop or even recursive calls between the different agents are discussed

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Distributed L1-state-and-fault estimation for Multi-agent systems

    Full text link
    In this paper, we propose a distributed state-and-fault estimation scheme for multi-agent systems. The proposed estimator is based on an 1\ell_1-norm optimization problem, which is inspired by sparse signal recovery in the field of compressive sampling. Two theoretical results are given to analyze the correctness of the proposed approach. First, we provide a necessary and sufficient condition such that state and fault signals are correctly estimated. The result presents a fundamental limitation of the algorithm, which shows how many faulty nodes are allowed to ensure a correct estimation. Second, we provide a sufficient condition for the estimation error of fault signals when numerical errors of solving the optimization problem are present. An illustrative example is given to validate the effectiveness of the proposed approach

    Making intelligent systems team players: Case studies and design issues. Volume 1: Human-computer interaction design

    Get PDF
    Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design

    Cooperation in Industrial Systems

    No full text
    ARCHON is an ongoing ESPRIT II project (P-2256) which is approximately half way through its five year duration. It is concerned with defining and applying techniques from the area of Distributed Artificial Intelligence to the development of real-size industrial applications. Such techniques enable multiple problem solvers (e.g. expert systems, databases and conventional numerical software systems) to communicate and cooperate with each other to improve both their individual problem solving behavior and the behavior of the community as a whole. This paper outlines the niche of ARCHON in the Distributed AI world and provides an overview of the philosophy and architecture of our approach the essence of which is to be both general (applicable to the domain of industrial process control) and powerful enough to handle real-world problems
    corecore