86 research outputs found

    A Novel Methodology for Memory Reduction in Distributed Arithmetic Based Discrete Wavelet Transform

    Get PDF
    AbstractDiscrete Wavelet Transform (DWT) is widely used in image compression standards such as JPEG 2000. DWT can be implemented on FPGA using parallel Distributed Arithmetic (DA) architecture, which is suitable for low power implementation. However, the size of the memory in DA increases with the number of wavelet coefficients. In this paper, we propose a novel methodology to reduce the size of the Look-Up Tables (LUTs) used in DA for DWT. The table entries are sorted using Burrows-Wheeler Transform (BWT) and then compressed. The compressed table is stored in memory. During DWT/IDWT computation, without reconstructing the entire table we can recover only the required table entry. A comparative study of this methodology among different wavelets is performed. We demonstrate that the method is very effective for reducing the memory of DA architectures. A compression ratio of around 2.3:1 is achieved for the look-up table which stores the inner product of high-pass filter coefficients of Daubechies-4 (Db4) wavelet which is used in JPEG2000

    Simple scalable nucleotic FPGA based short read aligner for exhaustive search of substitution errors

    Get PDF
    With the advent of the new and continuously improving technologies, in a couple of years DNA sequencing can be as commonplace as a simple blood test. The growth of sequencing efficiency has a larger exponent than the Moore’s law of standard processors, hence alignment and further processing of sequenced data is the bottleneck. The usage of FPGA (Field Programmable Gate Arrays) technology may provide an efficient alternative. We propose a simple algorithm for DNA sequence alignment, which can be realized efficiently by nucleotic principal agents of Non.Neumann nature. The prototype FPGA implementation runs on a small Terasic DE1-SoC demo board with a Cyclone V chip. We present test results and furthermore analyse the theoretical scalability of this system, showing that the execution time is independent of the length of reference genome sequences. A special advantage of this parallel algorithm is that it performs exhaustive search producing all match variants up to a predetermined number of point (mutation) errors

    Empirical Speedup Study of Truly Parallel Data Compression

    Get PDF
    We present an empirical study of novel work-optimal parallel algorithms for Burrows-Wheeler compression and decompression of strings over a constant alphabet. To validate these theoretical algorithms, we implement them on the experimental XMT computing platform developed especially for supporting parallel algorithms at the University of Maryland. We show speedups of up to 25x for compression, and 13x for decompression, versus bzip2, the de facto standard implementation of Burrows-Wheeler compression. Unlike existing approaches, which assign an entire (e.g., 900KB) block to a processor that processes the block serially, our approach is “truly parallel” as it processes in parallel the entire input. Besides the theoretical interest in solving the “right” problem, the importance of data compression speed for small inputs even at great expense of quality (compressed size of data) is demonstrated by the introduction of Google’s Snappy for MapReduce. Perhaps surprisingly, we show feasibility of holding on to quality, while even beating Snappy on speed. In turn, this work adds new evidence in support of the XMT/PRAM thesis: that an XMT-like many-core hardware/ software platform may be necessary for enabling general-purpose parallel computing. Comparison of our results to recently published work suggests 70x improvement over what current commercial parallel hardware can achieve.NSF grants CCF-0811504 and CNS116185

    Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

    Full text link
    This paper introduces a high-throughput software tool framework called {\it sam2bam} that enables users to significantly speedup pre-processing for next-generation sequencing data. The sam2bam is especially efficient on single-node multi-core large-memory systems. It can reduce the runtime of data pre-processing in marking duplicate reads on a single node system by 156-186x compared with de facto standard tools. The sam2bam consists of parallel software components that can fully utilize the multiple processors, available memory, high-bandwidth of storage, and hardware compression accelerators if available. The sam2bam provides file format conversion between well-known genome file formats, from SAM to BAM, as a basic feature. Additional features such as analyzing, filtering, and converting the input data are provided by {\it plug-in} tools, e.g., duplicate marking, which can be attached to sam2bam at runtime. We demonstrated that sam2bam could significantly reduce the runtime of NGS data pre-processing from about two hours to about one minute for a whole-exome data set on a 16-core single-node system using up to 130 GB of memory. The sam2bam could reduce the runtime for whole-genome sequencing data from about 20 hours to about nine minutes on the same system using up to 711 GB of memory

    Reconfigurable acceleration of genetic sequence alignment: A survey of two decades of efforts

    Get PDF
    Genetic sequence alignment has always been a computational challenge in bioinformatics. Depending on the problem size, software-based aligners can take multiple CPU-days to process the sequence data, creating a bottleneck point in bioinformatic analysis flow. Reconfigurable accelerator can achieve high performance for such computation by providing massive parallelism, but at the expense of programming flexibility and thus has not been commensurately used by practitioners. Therefore, this paper aims to provide a thorough survey of the proposed accelerators by giving a qualitative categorization based on their algorithms and speedup. A comprehensive comparison between work is also presented so as to guide selection for biologist, and to provide insight on future research direction for FPGA scientists

    Study of Fine-Grained, Irregular Parallel Applications on a Many-Core Processor

    Get PDF
    This dissertation demonstrates the possibility of obtaining strong speedups for a variety of parallel applications versus the best serial and parallel implementations on commodity platforms. These results were obtained using the PRAM-inspired Explicit Multi-Threading (XMT) many-core computing platform, which is designed to efficiently support execution of both serial and parallel code and switching between the two. Biconnectivity: For finding the biconnected components of a graph, we demonstrate speedups of 9x to 33x on XMT relative to the best serial algorithm using a relatively modest silicon budget. Further evidence suggests that speedups of 21x to 48x are possible. For graph connectivity, we demonstrate that XMT outperforms two contemporary NVIDIA GPUs of similar or greater silicon area. Prior studies of parallel biconnectivity algorithms achieved at most a 4x speedup, but we could not find biconnectivity code for GPUs to compare biconnectivity against them. Triconnectivity: We present a parallel solution to the problem of determining the triconnected components of an undirected graph. We obtain significant speedups on XMT over the only published optimal (linear-time) serial implementation of a triconnected components algorithm running on a modern CPU. To our knowledge, no other parallel implementation of a triconnected components algorithm has been published for any platform. Burrows-Wheeler compression: We present novel work-optimal parallel algorithms for Burrows-Wheeler compression and decompression of strings over a constant alphabet and their empirical evaluation. To validate these theoretical algorithms, we implement them on XMT and show speedups of up to 25x for compression, and 13x for decompression, versus bzip2, the de facto standard implementation of Burrows-Wheeler compression. Fast Fourier transform (FFT): Using FFT as an example, we examine the impact that adoption of some enabling technologies, including silicon photonics, would have on the performance of a many-core architecture. The results show that a single-chip many-core processor could potentially outperform a large high-performance computing cluster. Boosted decision trees: This chapter focuses on the hybrid memory architecture of the XMT computer platform, a key part of which is a flexible all-to-all interconnection network that connects processors to shared memory modules. First, to understand some recent advances in GPU memory architecture and how they relate to this hybrid memory architecture, we use microbenchmarks including list ranking. Then, we contrast the scalability of applications with that of routines. In particular, regardless of the scalability needs of full applications, some routines may involve smaller problem sizes, and in particular smaller levels of parallelism, perhaps even serial. To see how a hybrid memory architecture can benefit such applications, we simulate a computer with such an architecture and demonstrate the potential for a speedup of 3.3X over NVIDIA's most powerful GPU to date for XGBoost, an implementation of boosted decision trees, a timely machine learning approach. Boolean satisfiability (SAT): SAT is an important performance-hungry problem with applications in many problem domains. However, most work on parallelizing SAT solvers has focused on coarse-grained, mostly embarrassing parallelism. Here, we study fine-grained parallelism that can speed up existing sequential SAT solvers. We show the potential for speedups of up to 382X across a variety of problem instances. We hope that these results will stimulate future research

    Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    Full text link
    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics

    SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

    Get PDF
    Next-generation sequencing (NGS) technologies have led to a huge amount of genomic data that need to be analyzed and interpreted. This fact has a huge impact on the DNA sequence alignment process, which nowadays requires the mapping of billions of small DNA sequences onto a reference genome. In this way, sequence alignment remains the most time-consuming stage in the sequence analysis workflow. To deal with this issue, state of the art aligners take advantage of parallelization strategies. However, the existent solutions show limited scalability and have a complex implementation. In this work we introduce SparkBWA, a new tool that exploits the capabilities of a big data technology as Spark to boost the performance of one of the most widely adopted aligner, the Burrows-Wheeler Aligner (BWA). The design of SparkBWA uses two independent software layers in such a way that no modifications to the original BWA source code are required, which assures its compatibility with any BWA version (future or legacy). SparkBWA is evaluated in different scenarios showing noticeable results in terms of performance and scalability. A comparison to other parallel BWA-based aligners validates the benefits of our approach. Finally, an intuitive and flexible API is provided to NGS professionals in order to facilitate the acceptance and adoption of the new tool. The source code of the software described in this paper is publicly available at https://github.com/citiususc/SparkBWA, with a GPL3 licenseThis work was supported by Ministerio de EconomĂ­a y Competitividad (Spain) (http://www.mineco.gob.es) grants TIN2013-41129-P and TIN2014-54565-JIN. There was no additional external funding received for this studyS
    • 

    corecore