180 research outputs found

    Autonomously Reconfigurable Artificial Neural Network on a Chip

    Get PDF
    Artificial neural network (ANN), an established bio-inspired computing paradigm, has proved very effective in a variety of real-world problems and particularly useful for various emerging biomedical applications using specialized ANN hardware. Unfortunately, these ANN-based systems are increasingly vulnerable to both transient and permanent faults due to unrelenting advances in CMOS technology scaling, which sometimes can be catastrophic. The considerable resource and energy consumption and the lack of dynamic adaptability make conventional fault-tolerant techniques unsuitable for future portable medical solutions. Inspired by the self-healing and self-recovery mechanisms of human nervous system, this research seeks to address reliability issues of ANN-based hardware by proposing an Autonomously Reconfigurable Artificial Neural Network (ARANN) architectural framework. Leveraging the homogeneous structural characteristics of neural networks, ARANN is capable of adapting its structures and operations, both algorithmically and microarchitecturally, to react to unexpected neuron failures. Specifically, we propose three key techniques --- Distributed ANN, Decoupled Virtual-to-Physical Neuron Mapping, and Dual-Layer Synchronization --- to achieve cost-effective structural adaptation and ensure accurate system recovery. Moreover, an ARANN-enabled self-optimizing workflow is presented to adaptively explore a "Pareto-optimal" neural network structure for a given application, on the fly. Implemented and demonstrated on a Virtex-5 FPGA, ARANN can cover and adapt 93% chip area (neurons) with less than 1% chip overhead and O(n) reconfiguration latency. A detailed performance analysis has been completed based on various recovery scenarios

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    FPGA implementation of artificial neural networks

    Get PDF
    As the title suggests our project deals with a hardware implementation of artificial neural networks, specifically a FPGA implementation. During the course of this project we learnt about ANNs and the uses of such soft computing approaches, FPGAs, VHDL and use of various tools like Xilinx ISE Project Navigator and ModelSim. As numerous hardware implementations of ANNs already exist our aim was to come up with an approach that would facilitate topology evolution of the ANN as well

    A Novel Systolic Parallel Hardware Architecture for the FPGA Acceleration of Feedforward Neural Networks

    Get PDF
    New chips for machine learning applications appear, they are tuned for a specific topology, being efficient by using highly parallel designs at the cost of high power or large complex devices. However, the computational demands of deep neural networks require flexible and efficient hardware architectures able to fit different applications, neural network types, number of inputs, outputs, layers, and units in each layer, making the migration from software to hardware easy. This paper describes novel hardware implementing any feedforward neural network (FFNN): multilayer perceptron, autoencoder, and logistic regression. The architecture admits an arbitrary input and output number, units in layers, and a number of layers. The hardware combines matrix algebra concepts with serial-parallel computation. It is based on a systolic ring of neural processing elements (NPE), only requiring as many NPEs as neuron units in the largest layer, no matter the number of layers. The use of resources grows linearly with the number of NPEs. This versatile architecture serves as an accelerator in real-time applications and its size does not affect the system clock frequency. Unlike most approaches, a single activation function block (AFB) for the whole FFNN is required. Performance, resource usage, and accuracy for several network topologies and activation functions are evaluated. The architecture reaches 550 MHz clock speed in a Virtex7 FPGA. The proposed implementation uses 18-bit fixed point achieving similar classification performance to a floating point approach. A reduced weight bit size does not affect the accuracy, allowing more weights in the same memory. Different FFNN for Iris and MNIST datasets were evaluated and, for a real-time application of abnormal cardiac detection, a x256 acceleration was achieved. The proposed architecture can perform up to 1980 Giga operations per second (GOPS), implementing the multilayer FFNN of up to 3600 neurons per layer in a single chip. The architecture can be extended to bigger capacity devices or multi-chip by the simple NPE ring extension

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques
    corecore