635 research outputs found

    Emerging Prototyping Activities in Joint Radar-Communications

    Full text link
    The previous chapters have discussed the canvas of joint radar-communications (JRC), highlighting the key approaches of radar-centric, communications-centric and dual-function radar-communications systems. Several signal processing and related aspects enabling these approaches including waveform design, resource allocation, privacy and security, and intelligent surfaces have been elaborated in detail. These topics offer comprehensive theoretical guarantees and algorithms. However, they are largely based on theoretical models. A hardware validation of these techniques would lend credence to the results while enabling their embrace by industry. To this end, this chapter presents some of the prototyping initiatives that address some salient aspects of JRC. We describe some existing prototypes to highlight the challenges in design and performance of JRC. We conclude by presenting some avenues that require prototyping support in the future.Comment: Book chapter, 54 pages, 13 figures, 10 table

    Multi-gigabit microwave and millimeter-wave communications research at CSIRO

    Full text link
    © 2014 IEEE. High speed and long range wireless backhauls are cost-effective alternatives to fibre networks and becoming more and more attractive as the demand for broadband wireless services grows rapidly in recent years. However, current commercially available wireless backhaul systems neither provide sufficiently high speed nor meet the requirements to achieve both high speed and long range at the same time with sufficiently low latency for targeted applications. Traditional microwave systems can achieve long transmission range, but the data rates are limited to a few hundred Mega bits per second only. Multi-Gigabit wireless communications can be achieved using millimetre-wave (mm-wave) frequency bands, especially the E-bands, but the practical transmission range is still a major weakness. In this paper, the state-of-the-art microwave and mm-wave technologies developed at the Commonwealth Scientific and Industrial Research Organization (CSIRO) are introduced to demonstrate CSIRO's technology leadership in multi-Gigabit wireless communications research and development. The technology trends in multi-Gigabit wireless communications are also discussed and various recently developed microwave and mm-wave systems are compared. It is hoped that this paper will stimulate further research interest and industry development

    Architectures and synchronization techniques for distributed satellite systems: a survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.This work was supported by the Luxembourg National Research Fund (FNR), through the CORE Project COHEsive SATellite (COHESAT): Cognitive Cohesive Networks of Distributed Units for Active and Passive Space Applications, under Grant FNR11689919.Award-winningPostprint (published version
    • …
    corecore