831 research outputs found

    Leros: A Tiny Microcontroller for FPGAs

    Get PDF
    Abstract—Leros is a tiny microcontroller that is optimized for current low-cost FPGAs. Leros is designed with a balanced logic to on-chip memory relation. The design goal is a microcontroller that can be clocked in about half of the speed a pipelined on-chip memory and consuming less than 300 logic cells. The architecture, which follows from the design goals, is a pipelined 16-bit accumulator processor. An implementation of Leros needs at least one on-chip memory block and a few hundred logic cells. The application areas of Leros are twofold: First, it can be used as an intelligent peripheral device for auxiliary functions in an FPGA based system-on-chip design. Second, the very small size of Leros makes it an attractive softcore for many-core research with low-cost FPGAs. I

    High throughput spatial convolution filters on FPGAs

    Get PDF
    Digital signal processing (DSP) on field- programmable gate arrays (FPGAs) has long been appealing because of the inherent parallelism in these computations that can be easily exploited to accelerate such algorithms. FPGAs have evolved significantly to further enhance the mapping of these algorithms, included additional hard blocks, such as the DSP blocks found in modern FPGAs. Although these DSP blocks can offer more efficient mapping of DSP computations, they are primarily designed for 1-D filter structures. We present a study on spatial convolutional filter implementations on FPGAs, optimizing around the structure of the DSP blocks to offer high throughput while maintaining the coefficient flexibility that other published architectures usually sacrifice. We show that it is possible to implement large filters for large 4K resolution image frames at frame rates of 30–60 FPS, while maintaining functional flexibility
    • …
    corecore