175 research outputs found

    FPGA acceleration of DNA sequence alignment: design analysis and optimization

    Get PDF
    Existing FPGA accelerators for short read mapping often fail to utilize the complete biological information in sequencing data for simple hardware design, leading to missed or incorrect alignment. In this work, we propose a runtime reconfigurable alignment pipeline that considers all information in sequencing data for the biologically accurate acceleration of short read mapping. We focus our efforts on accelerating two string matching techniques: FM-index and the Smith-Waterman algorithm with the affine-gap model which are commonly used in short read mapping. We further optimize the FPGA hardware using a design analyzer and merger to improve alignment performance. The contributions of this work are as follows. 1. We accelerate the exact-match and mismatch alignment by leveraging the FM-index technique. We optimize memory access by compressing the data structure and interleaving the access with multiple short reads. The FM-index hardware also considers complete information in the read data to maximize accuracy. 2. We propose a seed-and-extend model to accelerate alignment with indels. The FM-index hardware is extended to support the seeding stage while a Smith-Waterman implementation with the affine-gap model is developed on FPGA for the extension stage. This model can improve the efficiency of indel alignment with comparable accuracy versus state-of-the-art software. 3. We present an approach for merging multiple FPGA designs into a single hardware design, so that multiple place-and-route tasks can be replaced by a single task to speed up functional evaluation of designs. We first experiment with this approach to demonstrate its feasibility for different designs. Then we apply this approach to optimize one of the proposed FPGA aligners for better alignment performance.Open Acces

    Reconfigurable acceleration of genetic sequence alignment: A survey of two decades of efforts

    Get PDF
    Genetic sequence alignment has always been a computational challenge in bioinformatics. Depending on the problem size, software-based aligners can take multiple CPU-days to process the sequence data, creating a bottleneck point in bioinformatic analysis flow. Reconfigurable accelerator can achieve high performance for such computation by providing massive parallelism, but at the expense of programming flexibility and thus has not been commensurately used by practitioners. Therefore, this paper aims to provide a thorough survey of the proposed accelerators by giving a qualitative categorization based on their algorithms and speedup. A comprehensive comparison between work is also presented so as to guide selection for biologist, and to provide insight on future research direction for FPGA scientists

    An FPGA accelerator of the wavefront algorithm for genomics pairwise alignment

    Get PDF
    In the last years, advances in next-generation sequencing technologies have enabled the proliferation of genomic applications that guide personalized medicine. These applications have an enormous computational cost due to the large amount of genomic data they process. The first step in many of these applications consists in aligning reads against a reference genome. Very recently, the wavefront alignment algorithm has been introduced, significantly reducing the execution time of the read alignment process. This paper presents the first FPGA- based hardware/software co-designed accelerator of such relevant algorithm. Compared to the reference WFA CPU-only implementation, the proposed FPGA accelerator achieves performance speedups of up to 13.5× while consuming up to 14.6× less energy.ed medicine. These applications have an enormous computational cost due to the large amount of genomic data they process. The first step in many of these applications consists in aligning reads against a reference genome. Very recently, the wavefront alignment algorithm has been introduced, significantly reducing the execution time of the read alignment process. This paper presents the first FPGA- based hardware/software co-designed accelerator of such relevant algorithm. Compared to the reference WFA CPU-only imple- mentation, the proposed FPGA accelerator achieves performance speedups of up to 13.5× while consuming up to 14.6× less energy.This work has been supported by the European HiPEAC Network of Excellence, by the Spanish Ministry of Science and Innovation (contract PID2019-107255GB-C21/AEI/10.13039/501100011033), by the Generalitat de Catalunya (contracts 2017-SGR-1414 and 2017-SGR-1328), by the IBM/BSC Deep Learning Center initiative, and by the DRAC project, which is co-financed by the European Union Regional Development Fund within the framework of the ERDF Operational Program of Catalonia 2014-2020 with a grant of 50% of total eligible cost. Ll. Alvarez has been partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under the Juan de la Cierva Formacion fellowship No. FJCI-2016-30984. M. Moreto has been partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Ramon y Cajal fellowship No. RYC-2016-21104.Peer ReviewedPostprint (author's final draft

    Dataflow acceleration of Smith-Waterman with Traceback for high throughput Next Generation Sequencing

    Get PDF
    Smith-Waterman algorithm is widely adopted bymost popular DNA sequence aligners. The inherent algorithmcomputational intensity and the vast amount of NGS input datait operates on, create a bottleneck in genomic analysis flows forshort-read alignment. FPGA architectures have been extensivelyleveraged to alleviate the problem, each one adopting a differentapproach. In existing solutions, effective co-design of the NGSshort-read alignment still remains an open issue, mainly due tonarrow view on real integration aspects, such as system widecommunication and accelerator call overheads. In this paper, wepropose a dataflow architecture for Smith-Waterman Matrix-filland Traceback alignment stages, to perform short-read alignmenton NGS data. The architectural decision of moving both stages onchip extinguishes the communication overhead, and coupled withradical software restructuring, allows for efficient integration intowidely-used Bowtie2 aligner. This approach delivers×18 speedupover the respective Bowtie2 standalone components, while our co-designed Bowtie2 demonstrates a 35% boost in performance

    An In-Memory Architecture for High-Performance Long-Read Pre-Alignment Filtering

    Full text link
    With the recent move towards sequencing of accurate long reads, finding solutions that support efficient analysis of these reads becomes more necessary. The long execution time required for sequence alignment of long reads negatively affects genomic studies relying on sequence alignment. Although pre-alignment filtering as an extra step before alignment was recently introduced to mitigate sequence alignment for short reads, these filters do not work as efficiently for long reads. Moreover, even with efficient pre-alignment filters, the overall end-to-end (i.e., filtering + original alignment) execution time of alignment for long reads remains high, while the filtering step is now a major portion of the end-to-end execution time. Our paper makes three contributions. First, it identifies data movement of sequences between memory units and computing units as the main source of inefficiency for pre-alignment filters of long reads. This is because although filters reject many of these long sequencing pairs before they get to the alignment stage, they still require a huge cost regarding time and energy consumption for the large data transferred between memory and processor. Second, this paper introduces an adaptation of a short-read pre-alignment filtering algorithm suitable for long reads. We call this LongGeneGuardian. Finally, it presents Filter-Fuse as an architecture that supports LongGeneGuardian inside the memory. FilterFuse exploits the Computation-In-Memory computing paradigm, eliminating the cost of data movement in LongGeneGuardian. Our evaluations show that FilterFuse improves the execution time of filtering by 120.47x for long reads compared to State-of-the-Art (SoTA) filter, SneakySnake. FilterFuse also improves the end-to-end execution time of sequence alignment by up to 49.14x and 5207.63x compared to SneakySnake with SoTA aligner and only SoTA aligner, respectively
    corecore