539 research outputs found

    Mind the (synthesis) gap: examining where academic FPGA tools lag behind industry

    Get PDF
    Firstly, we present VTR-to-Bitstream v2.0, the latest version of our open-source toolchain that takes Verilog input and produces a packed, placed— and now routed—solution that can be programmed onto the Xilinx commercial FPGA architecture. Secondly, we apply this updated tool to measure the gap between academic and industrial FPGA tools by examining the quality of results at each of the three main compilation stages: synthesis, packing & placement, routing. Our findings indicate that the delay gap (according to Xilinx static timing analysis) for academic tools breaks down into a 31% degradation with synthesis, 10% with packing & placement, and 15% with routing. This leads us to believe that opportunities for improvement exist not only within VPR, but also in the front-end tools that lie upstream

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    Interconnect architectures for dynamically partially reconfigurable systems

    Get PDF
    Dynamically partially reconfigurable FPGAs (Field-Programmable Gate Arrays) allow hardware modules to be placed and removed at runtime while other parts of the system keep working. With their potential benefits, they have been the topic of a great deal of research over the last decade. To exploit the partial reconfiguration capability of FPGAs, there is a need for efficient, dynamically adaptive communication infrastructure that automatically adapts as modules are added to and removed from the system. Many bus and network-on-chip (NoC) architectures have been proposed to exploit this capability on FPGA technology. However, few realizations have been reported in the public literature to demonstrate or compare their performance in real world applications. While partial reconfiguration can offer many benefits, it is still rarely exploited in practical applications. Few full realizations of partially reconfigurable systems in current FPGA technologies have been published. More application experiments are required to understand the benefits and limitations of implementing partially reconfigurable systems and to guide their further development. The motivation of this thesis is to fill this research gap by providing empirical evidence of the cost and benefits of different interconnect architectures. The results will provide a baseline for future research and will be directly useful for circuit designers who must make a well-reasoned choice between the alternatives. This thesis contains the results of experiments to compare different NoC and bus interconnect architectures for FPGA-based designs in general and dynamically partially reconfigurable systems. These two interconnect schemes are implemented and evaluated in terms of performance, area and power consumption using FFT (Fast Fourier Transform) andANN(Artificial Neural Network) systems as benchmarks. Conclusions drawn from these results include recommendations concerning the interconnect approach for different kinds of applications. It is found that a NoC provides much better performance than a single channel bus and similar performance to a multi-channel bus in both parallel and parallel-pipelined FFT systems. This suggests that a NoC is a better choice for systems with multiple simultaneous communications like the FFT. Bus-based interconnect achieves better performance and consume less area and power than NoCbased scheme for the fully-connected feed-forward NN system. This suggests buses are a better choice for systems that do not require many simultaneous communications or systems with broadcast communications like a fully-connected feed-forward NN. Results from the experiments with dynamic partial reconfiguration demonstrate that buses have the advantages of better resource utilization and smaller reconfiguration time and memory than NoCs. However, NoCs are more flexible and expansible. They have the advantage of placing almost all of the communication infrastructure in the dynamic reconfiguration region. This means that different applications running on the FPGA can use different interconnection strategies without the overhead of fixed bus resources in the static region. Another objective of the research is to examine the partial reconfiguration process and reconfiguration overhead with current FPGA technologies. Partial reconfiguration allows users to efficiently change the number of running PEs to choose an optimal powerperformance operating point at the minimum cost of reconfiguration. However, this brings drawbacks including resource utilization inefficiency, power consumption overhead and decrease in system operating frequency. The experimental results report a 50% of resource utilization inefficiency with a power consumption overhead of less than 5% and a decrease in frequency of up to 32% compared to a static implementation. The results also show that most of the drawbacks of partial reconfiguration implementation come from the restrictions and limitations of partial reconfiguration design flow. If these limitations can be addressed, partial reconfiguration should still be considered with its potential benefits.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201

    A Modular Approach to Adaptive Reactive Streaming Systems

    Get PDF
    The latest generations of FPGA devices offer large resource counts that provide the headroom to implement large-scale and complex systems. However, there are increasing challenges for the designer, not just because of pure size and complexity, but also in harnessing effectively the flexibility and programmability of the FPGA. A central issue is the need to integrate modules from diverse sources to promote modular design and reuse. Further, the capability to perform dynamic partial reconfiguration (DPR) of FPGA devices means that implemented systems can be made reconfigurable, allowing components to be changed during operation. However, use of DPR typically requires low-level planning of the system implementation, adding to the design challenge. This dissertation presents ReShape: a high-level approach for designing systems by interconnecting modules, which gives a ‘plug and play’ look and feel to the designer, is supported by tools that carry out implementation and verification functions, and is carried through to support system reconfiguration during operation. The emphasis is on the inter-module connections and abstracting the communication patterns that are typical between modules – for example, the streaming of data that is common in many FPGA-based systems, or the reading and writing of data to and from memory modules. ShapeUp is also presented as the static precursor to ReShape. In both, the details of wiring and signaling are hidden from view, via metadata associated with individual modules. ReShape allows system reconfiguration at the module level, by supporting type checking of replacement modules and by managing the overall system implementation, via metadata associated with its FPGA floorplan. The methodology and tools have been implemented in a prototype for a broad domain-specific setting – networking systems – and have been validated on real telecommunications design projects

    Techniques for low-overhead dynamic partial reconfiguration of FPGAs

    Get PDF

    Multistage Switching Architectures for Software Routers

    Get PDF
    Software routers based on personal computer (PC) architectures are becoming an important alternative to proprietary and expensive network devices. However, software routers suffer from many limitations of the PC architecture, including, among others, limited bus and central processing unit (CPU) bandwidth, high memory access latency, limited scalability in terms of number of network interface cards, and lack of resilience mechanisms. Multistage PC-based architectures can be an interesting alternative since they permit us to i) increase the performance of single software routers, ii) scale router size, iii) distribute packet manipulation and control functionality, iv) recover from single-component failures, and v) incrementally upgrade router performance. We propose a specific multistage architecture, exploiting PC-based routers as switching elements, to build a high-speed, largesize,scalable, and reliable software router. A small-scale prototype of the multistage router is currently up and running in our labs, and performance evaluation is under wa

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Multi-Granular Optical Cross-Connect: Design, Analysis, and Demonstration

    Get PDF
    A fundamental issue in all-optical switching is to offer efficient and cost-effective transport services for a wide range of bandwidth granularities. This paper presents multi-granular optical cross-connect (MG-OXC) architectures that combine slow (ms regime) and fast (ns regime) switch elements, in order to support optical circuit switching (OCS), optical burst switching (OBS), and even optical packet switching (OPS). The MG-OXC architectures are designed to provide a cost-effective approach, while offering the flexibility and reconfigurability to deal with dynamic requirements of different applications. All proposed MG-OXC designs are analyzed and compared in terms of dimensionality, flexibility/reconfigurability, and scalability. Furthermore, node level simulations are conducted to evaluate the performance of MG-OXCs under different traffic regimes. Finally, the feasibility of the proposed architectures is demonstrated on an application-aware, multi-bit-rate (10 and 40 Gbps), end-to-end OBS testbed
    corecore