1,009 research outputs found

    Quantifying Shannon's Work Function for Cryptanalytic Attacks

    Full text link
    Attacks on cryptographic systems are limited by the available computational resources. A theoretical understanding of these resource limitations is needed to evaluate the security of cryptographic primitives and procedures. This study uses an Attacker versus Environment game formalism based on computability logic to quantify Shannon's work function and evaluate resource use in cryptanalysis. A simple cost function is defined which allows to quantify a wide range of theoretical and real computational resources. With this approach the use of custom hardware, e.g., FPGA boards, in cryptanalysis can be analyzed. Applied to real cryptanalytic problems, it raises, for instance, the expectation that the computer time needed to break some simple 90 bit strong cryptographic primitives might theoretically be less than two years.Comment: 19 page

    A Comprehensive Survey on the Implementations, Attacks, and Countermeasures of the Current NIST Lightweight Cryptography Standard

    Full text link
    This survey is the first work on the current standard for lightweight cryptography, standardized in 2023. Lightweight cryptography plays a vital role in securing resource-constrained embedded systems such as deeply-embedded systems (implantable and wearable medical devices, smart fabrics, smart homes, and the like), radio frequency identification (RFID) tags, sensor networks, and privacy-constrained usage models. National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight cryptography and after a relatively-long multi-year effort, eventually, in Feb. 2023, the competition ended with ASCON as the winner. This lightweight cryptographic standard will be used in deeply-embedded architectures to provide security through confidentiality and integrity/authentication (the dual of the legacy AES-GCM block cipher which is the NIST standard for symmetric key cryptography). ASCON's lightweight design utilizes a 320-bit permutation which is bit-sliced into five 64-bit register words, providing 128-bit level security. This work summarizes the different implementations of ASCON on field-programmable gate array (FPGA) and ASIC hardware platforms on the basis of area, power, throughput, energy, and efficiency overheads. The presented work also reviews various differential and side-channel analysis attacks (SCAs) performed across variants of ASCON cipher suite in terms of algebraic, cube/cube-like, forgery, fault injection, and power analysis attacks as well as the countermeasures for these attacks. We also provide our insights and visions throughout this survey to provide new future directions in different domains. This survey is the first one in its kind and a step forward towards scrutinizing the advantages and future directions of the NIST lightweight cryptography standard introduced in 2023

    A New Cross-Layer FPGA-Based Security Scheme for Wireless Networks

    Get PDF
    This chapter presents a new cross-layer security scheme which deploys efficient coding techniques in the physical layer in an upper layer classical cryptographic protocol system. The rationale in designing the new scheme is to enhance security-throughput trade-off in wireless networks which is in contrast to existing schemes which either enhances security at the detriment of data throughput or vice versa. The new scheme is implemented using the residue number system (RNS), non-linear convolutional coding and subband coding at the physical layer and RSA cryptography at the upper layers. The RNS reduces the huge data obtained from RSA cryptography into small parallel data. To increase the security level, iterated wavelet-based subband coding splits the ciphertext into different levels of decomposition. At subsequent levels of decomposition, the ciphertext from the preceding level serves as data for encryption using convolutional codes. In addition, throughput is enhanced by transmitting small parallel data and the bit error correction capability of non-linear convolutional code. It is shown that, various passive and active attacks common to wireless networks could be circumvented. An FPGA implementation applied to CDMA could fit into a single Virtex-4 FPGA due to small parallel data sizes employed
    • …
    corecore