1,897 research outputs found

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    Use of Field Programmable Gate Array Technology in Future Space Avionics

    Get PDF
    Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA

    Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration

    Get PDF
    The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs

    SysMART Indoor Services: A System of Smart and Connected Supermarkets

    Full text link
    Smart gadgets are being embedded almost in every aspect of our lives. From smart cities to smart watches, modern industries are increasingly supporting the Internet of Things (IoT). SysMART aims at making supermarkets smart, productive, and with a touch of modern lifestyle. While similar implementations to improve the shopping experience exists, they tend mainly to replace the shopping activity at the store with online shopping. Although online shopping reduces time and effort, it deprives customers from enjoying the experience. SysMART relies on cutting-edge devices and technology to simplify and reduce the time required during grocery shopping inside the supermarket. In addition, the system monitors and maintains perishable products in good condition suitable for human consumption. SysMART is built using state-of-the-art technologies that support rapid prototyping and precision data acquisition. The selected development environment is LabVIEW with its world-class interfacing libraries. The paper comprises a detailed system description, development strategy, interface design, software engineering, and a thorough analysis and evaluation.Comment: 7 pages, 11 figur

    A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    Get PDF
    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year
    • …
    corecore