622 research outputs found

    Fast learning optimized prediction methodology for protein secondary structure prediction, relative solvent accessibility prediction and phosphorylation prediction

    Get PDF
    Computational methods are rapidly gaining importance in the field of structural biology, mostly due to the explosive progress in genome sequencing projects and the large disparity between the number of sequences and the number of structures. There has been an exponential growth in the number of available protein sequences and a slower growth in the number of structures. There is therefore an urgent need to develop computed structures and identify the functions of these sequences. Developing methods that will satisfy these needs both efficiently and accurately is of paramount importance for advances in many biomedical fields, for a better basic understanding of aberrant states of stress and disease, including drug discovery and discovery of biomarkers. Several aspects of secondary structure predictions and other protein structure-related predictions are investigated using different types of information such as data obtained from knowledge-based potentials derived from amino acids in protein sequences, physicochemical properties of amino acids and propensities of amino acids to appear at the ends of secondary structures. Investigating the performance of these secondary structure predictions by type of amino acid highlights some interesting aspects relating to the influences of the individual amino acid types on formation of secondary structures and points toward ways to make further gains. Other research areas include Relative Solvent Accessibility (RSA) predictions and predictions of phosphorylation sites, which is one of the Post-Translational Modification (PTM) sites in proteins. Protein secondary structures and other features of proteins are predicted efficiently, reliably, less expensively and more accurately. A novel method called Fast Learning Optimized PREDiction (FLOPRED) Methodology is proposed for predicting protein secondary structures and other features, using knowledge-based potentials, a Neural Network based Extreme Learning Machine (ELM) and advanced Particle Swarm Optimization (PSO) techniques that yield better and faster convergence to produce more accurate results. These techniques yield superior classification of secondary structures, with a training accuracy of 93.33% and a testing accuracy of 92.24% with a standard deviation of 0.48% obtained for a small group of 84 proteins. We have a Matthew\u27s correlation-coefficient ranging between 80.58% and 84.30% for these secondary structures. Accuracies for individual amino acids range between 83% and 92% with an average standard deviation between 0.3% and 2.9% for the 20 amino acids. On a larger set of 415 proteins, we obtain a testing accuracy of 86.5% with a standard deviation of 1.38%. These results are significantly higher than those found in the literature. Prediction of protein secondary structure based on amino acid sequence is a common technique used to predict its 3-D structure. Additional information such as the biophysical properties of the amino acids can help improve the results of secondary structure prediction. A database of protein physicochemical properties is used as features to encode protein sequences and this data is used for secondary structure prediction using FLOPRED. Preliminary studies using a Genetic Algorithm (GA) for feature selection, Principal Component Analysis (PCA) for feature reduction and FLOPRED for classification give promising results. Some amino acids appear more often at the ends of secondary structures than others. A preliminary study has indicated that secondary structure accuracy can be improved as much as 6% by including these effects for those residues present at the ends of alpha-helix, beta-strand and coil. A study on RSA prediction using ELM shows large gains in processing speed compared to using support vector machines for classification. This indicates that ELM yields a distinct advantage in terms of processing speed and performance for RSA. Additional gains in accuracies are possible when the more advanced FLOPRED algorithm and PSO optimization are implemented. Phosphorylation is a post-translational modification on proteins often controls and regulates their activities. It is an important mechanism for regulation. Phosphorylated sites are known to be present often in intrinsically disordered regions of proteins lacking unique tertiary structures, and thus less information is available about the structures of phosphorylated sites. It is important to be able to computationally predict phosphorylation sites in protein sequences obtained from mass-scale sequencing of genomes. Phosphorylation sites may aid in the determination of the functions of a protein and to better understanding the mechanisms of protein functions in healthy and diseased states. FLOPRED is used to model and predict experimentally determined phosphorylation sites in protein sequences. Our new PSO optimization included in FLOPRED enable the prediction of phosphorylation sites with higher accuracy and with better generalization. Our preliminary studies on 984 sequences demonstrate that this model can predict phosphorylation sites with a training accuracy of 92.53% , a testing accuracy 91.42% and Matthew\u27s correlation coefficient of 83.9%. In summary, secondary structure prediction, Relative Solvent Accessibility and phosphorylation site prediction have been carried out on multiple sets of data, encoded with a variety of information drawn from proteins and the physicochemical properties of their constituent amino acids. Improved and efficient algorithms called S-ELM and FLOPRED, which are based on Neural Networks and Particle Swarm Optimization are used for classifying and predicting protein sequences. Analysis of the results of these studies provide new and interesting insights into the influence of amino acids on secondary structure prediction. S-ELM and FLOPRED have also proven to be robust and efficient for predicting relative solvent accessibility of proteins and phosphorylation sites. These studies show that our method is robust and resilient and can be applied for a variety of purposes. It can be expected to yield higher classification accuracy and better generalization performance compared to previous methods

    Identification of RNA Binding Proteins and RNA Binding Residues Using Effective Machine Learning Techniques

    Get PDF
    Identification and annotation of RNA Binding Proteins (RBPs) and RNA Binding residues from sequence information alone is one of the most challenging problems in computational biology. RBPs play crucial roles in several fundamental biological functions including transcriptional regulation of RNAs and RNA metabolism splicing. Existing experimental techniques are time-consuming and costly. Thus, efficient computational identification of RBPs directly from the sequence can be useful to annotate RBP and assist the experimental design. Here, we introduce AIRBP, a computational sequence-based method, which utilizes features extracted from evolutionary information, physiochemical properties, and disordered properties to train a machine learning method designed using stacking, an advanced machine learning technique, for effective prediction of RBPs. Furthermore, it makes use of efficient machine learning algorithms like Support Vector Machine, Logistic Regression, K-Nearest Neighbor and XGBoost (Extreme Gradient Boosting Algorithm). In this research work, we also propose another predictor for efficient annotation of RBP residues. This RBP residue predictor also uses stacking and evolutionary algorithms for efficient annotation of RBPs and RNA Binding residue. The RNA-binding residue predictor also utilizes various evolutionary, physicochemical and disordered properties to train a robust model. This thesis presents a possible solution to the RBP and RNA binding residue prediction problem through two independent predictors, both of which outperform existing state-of-the-art approaches

    Identification of RNA Binding Proteins and RNA Binding Residues Using Effective Machine Learning Techniques

    Get PDF
    Identification and annotation of RNA Binding Proteins (RBPs) and RNA Binding residues from sequence information alone is one of the most challenging problems in computational biology. RBPs play crucial roles in several fundamental biological functions including transcriptional regulation of RNAs and RNA metabolism splicing. Existing experimental techniques are time-consuming and costly. Thus, efficient computational identification of RBPs directly from the sequence can be useful to annotate RBP and assist the experimental design. Here, we introduce AIRBP, a computational sequence-based method, which utilizes features extracted from evolutionary information, physiochemical properties, and disordered properties to train a machine learning method designed using stacking, an advanced machine learning technique, for effective prediction of RBPs. Furthermore, it makes use of efficient machine learning algorithms like Support Vector Machine, Logistic Regression, K-Nearest Neighbor and XGBoost (Extreme Gradient Boosting Algorithm). In this research work, we also propose another predictor for efficient annotation of RBP residues. This RBP residue predictor also uses stacking and evolutionary algorithms for efficient annotation of RBPs and RNA Binding residue. The RNA-binding residue predictor also utilizes various evolutionary, physicochemical and disordered properties to train a robust model. This thesis presents a possible solution to the RBP and RNA binding residue prediction problem through two independent predictors, both of which outperform existing state-of-the-art approaches

    Machine Learning based Protein Sequence to (un)Structure Mapping and Interaction Prediction

    Get PDF
    Proteins are the fundamental macromolecules within a cell that carry out most of the biological functions. The computational study of protein structure and its functions, using machine learning and data analytics, is elemental in advancing the life-science research due to the fast-growing biological data and the extensive complexities involved in their analyses towards discovering meaningful insights. Mapping of protein’s primary sequence is not only limited to its structure, we extend that to its disordered component known as Intrinsically Disordered Proteins or Regions in proteins (IDPs/IDRs), and hence the involved dynamics, which help us explain complex interaction within a cell that is otherwise obscured. The objective of this dissertation is to develop machine learning based effective tools to predict disordered protein, its properties and dynamics, and interaction paradigm by systematically mining and analyzing large-scale biological data. In this dissertation, we propose a robust framework to predict disordered proteins given only sequence information, using an optimized SVM with RBF kernel. Through appropriate reasoning, we highlight the structure-like behavior of IDPs in disease-associated complexes. Further, we develop a fast and effective predictor of Accessible Surface Area (ASA) of protein residues, a useful structural property that defines protein’s exposure to partners, using regularized regression with 3rd-degree polynomial kernel function and genetic algorithm. As a key outcome of this research, we then introduce a novel method to extract position specific energy (PSEE) of protein residues by modeling the pairwise thermodynamic interactions and hydrophobic effect. PSEE is found to be an effective feature in identifying the enthalpy-gain of the folded state of a protein and otherwise the neutral state of the unstructured proteins. Moreover, we study the peptide-protein transient interactions that involve the induced folding of short peptides through disorder-to-order conformational changes to bind to an appropriate partner. A suite of predictors is developed to identify the residue-patterns of Peptide-Recognition Domains from protein sequence that can recognize and bind to the peptide-motifs and phospho-peptides with post-translational-modifications (PTMs) of amino acid, responsible for critical human diseases, using the stacked generalization ensemble technique. The involved biologically relevant case-studies demonstrate possibilities of discovering new knowledge using the developed tools

    Probing Local Atomic Environments to Model RNA Energetics and Structure

    Full text link
    Ribonucleic acids (RNA) are critical components of living systems. Understanding RNA structure and its interaction with other molecules is an essential step in understanding RNA-driven processes within the cell. Experimental techniques like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and chemical probing methods have provided insights into RNA structures on the atomic scale. To effectively exploit experimental data and characterize features of an RNA structure, quantitative descriptors of local atomic environments are required. Here, I investigated different ways to describe RNA local atomic environments. First, I investigated the solvent-accessible surface area (SASA) as a probe of RNA local atomic environment. SASA contains information on the level of exposure of an RNA atom to solvents and, in some cases, is highly correlated to reactivity profiles derived from chemical probing experiments. Using Bayesian/maximum entropy (BME), I was able to reweight RNA structure models based on the agreement between SASA and chemical reactivities. Next, I developed a numerical descriptor (the atomic fingerprint), that is capable of discriminating different atomic environments. Using atomic fingerprints as features enable the prediction of RNA structure and structure-related properties. Two detailed examples are discussed. Firstly, a classification model was developed to predict Mg2+^{2+} ion binding sites. Results indicate that the model could predict Mg2+^{2+} binding sites with reasonable accuracy, and it appears to outperform existing methods. Secondly, a set of models were developed to identify cavities in RNA that are likely to accommodate small-molecule ligands. The models were also used to identify bound-like conformations from an ensemble of RNA structures. The frameworks presented here provide paths to connect the local atomic environment to RNA structure, and I envision they will provide opportunities to develop novel RNA modeling tools.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163135/1/jingrux_1.pd

    Machine learning methods for omics data integration

    Get PDF
    High-throughput technologies produce genome-scale transcriptomic and metabolomic (omics) datasets that allow for the system-level studies of complex biological processes. The limitation lies in the small number of samples versus the larger number of features represented in these datasets. Machine learning methods can help integrate these large-scale omics datasets and identify key features from each dataset. A novel class dependent feature selection method integrates the F statistic, maximum relevance binary particle swarm optimization (MRBPSO), and class dependent multi-category classification (CDMC) system. A set of highly differentially expressed genes are pre-selected using the F statistic as a filter for each dataset. MRBPSO and CDMC function as a wrapper to select desirable feature subsets for each class and classify the samples using those chosen class-dependent feature subsets. The results indicate that the class-dependent approaches can effectively identify unique biomarkers for each cancer type and improve classification accuracy compared to class independent feature selection methods. The integration of transcriptomics and metabolomics data is based on a classification framework. Compared to principal component analysis and non-negative matrix factorization based integration approaches, our proposed method achieves 20-30% higher prediction accuracies on Arabidopsis tissue development data. Metabolite-predictive genes and gene-predictive metabolites are selected from transcriptomic and metabolomic data respectively. The constructed gene-metabolite correlation network can infer the functions of unknown genes and metabolites. Tissue-specific genes and metabolites are identified by the class-dependent feature selection method. Evidence from subcellular locations, gene ontology, and biochemical pathways support the involvement of these entities in different developmental stages and tissues in Arabidopsis
    • …
    corecore