1,129 research outputs found

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, Ο‡(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for Ο‡(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that Ο‡(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with kβ‰₯3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    Regularly Varying Random Fields

    Full text link
    We study the extremes of multivariate regularly varying random fields. The crucial tools in our study are the tail field and the spectral field, notions that extend the tail and spectral processes of Basrak and Segers (2009). The spatial context requires multiple notions of extremal index, and the tail and spectral fields are applied to clarify these notions and other aspects of extremal clusters. An important application of the techniques we develop is to the Brown-Resnick random fields.Comment: 1 figur
    • …
    corecore