5,795 research outputs found

    The covering radius problem for sets of perfect matchings

    Full text link
    Consider the family of all perfect matchings of the complete graph K2nK_{2n} with 2n2n vertices. Given any collection M\mathcal M of perfect matchings of size ss, there exists a maximum number f(n,x)f(n,x) such that if sf(n,x)s\leq f(n,x), then there exists a perfect matching that agrees with each perfect matching in M\mathcal M in at most x1x-1 edges. We use probabilistic arguments to give several lower bounds for f(n,x)f(n,x). We also apply the Lov\'asz local lemma to find a function g(n,x)g(n,x) such that if each edge appears at most g(n,x)g(n, x) times then there exists a perfect matching that agrees with each perfect matching in M\mathcal M in at most x1x-1 edges. This is an analogue of an extremal result vis-\'a-vis the covering radius of sets of permutations, which was studied by Cameron and Wanless (cf. \cite{cameron}), and Keevash and Ku (cf. \cite{ku}). We also conclude with a conjecture of a more general problem in hypergraph matchings.Comment: 10 page

    A manifold of pure Gibbs states of the Ising model on a Cayley tree

    Full text link
    We study the Ising model on a Cayley tree. A wide class of new Gibbs states is exhibited

    On the number of maximal intersecting k-uniform families and further applications of Tuza's set pair method

    Get PDF
    We study the function M(n,k)M(n,k) which denotes the number of maximal kk-uniform intersecting families F([n]k)F\subseteq \binom{[n]}{k}. Improving a bound of Balogh at al. on M(n,k)M(n,k), we determine the order of magnitude of logM(n,k)\log M(n,k) by proving that for any fixed kk, M(n,k)=nΘ((2kk))M(n,k) =n^{\Theta(\binom{2k}{k})} holds. Our proof is based on Tuza's set pair approach. The main idea is to bound the size of the largest possible point set of a cross-intersecting system. We also introduce and investigate some related functions and parameters.Comment: 11 page
    corecore