11,375 research outputs found

    An Extensive Formal Analysis of Multi-factor Authentication Protocols

    Get PDF
    International audiencePasswords are still the most widespread means for authenticating users, even though they have been shown to create huge security problems. This motivated the use of additional authentication mechanisms in so-called multi-factor authentication protocols. In this article, we define a detailed threat model for this kind of protocol: While in classical protocol analysis attackers control the communication network, we take into account that many communications are performed over TLS channels, that computers may be infected by different kinds of malware, that attackers could perform phishing, and that humans may omit some actions. We formalize this model in the applied pi calculus and perform an extensive analysis and comparison of several widely used protocols—variants of Google 2-step and FIDO’s U2F (Yubico’s Security Key token). The analysis is completely automated, generating systematically all combinations of threat scenarios for each of the protocols and using the P ROVERIF tool for automated protocol analysis. To validate our model and attacks, we demonstrate their feasibility in practice, even though our experiments are run in a laboratory environment. Our analysis highlights weaknesses and strengths of the different protocols. It allows us to suggest several small modifications of the existing protocols that are easy to implement, as well as an extension of Google 2-step that improves security in several threat scenarios

    An extensive formal analysis of multi-factor authentication protocols

    Get PDF
    International audiencePasswords are still the most widespread means for authenticating users, even though they have been shown to create huge security problems. This motivated the use of additional authentication mechanisms used in so-called multi-factor authentication protocols. In this paper we define a detailed threat model for this kind of protocols: while in classical protocol analysis attackers control the communication network, we take into account that many communications are performed over TLS channels, that computers may be infected by different kinds of malwares, that attackers could perform phishing, and that humans may omit some actions. We formalize this model in the applied pi calculus and perform an extensive analysis and comparison of several widely used protocols-variants of Google 2-step and FIDO's U2F. The analysis is completely automated, generating systematically all combinations of threat scenarios for each of the protocols and using the PROVERIF tool for automated protocol analysis. Our analysis highlights weaknesses and strengths of the different protocols, and allows us to suggest several small modifications of the existing protocols which are easy to implement, yet improve their security in several threat scenarios

    Actor-network procedures: Modeling multi-factor authentication, device pairing, social interactions

    Full text link
    As computation spreads from computers to networks of computers, and migrates into cyberspace, it ceases to be globally programmable, but it remains programmable indirectly: network computations cannot be controlled, but they can be steered by local constraints on network nodes. The tasks of "programming" global behaviors through local constraints belong to the area of security. The "program particles" that assure that a system of local interactions leads towards some desired global goals are called security protocols. As computation spreads beyond cyberspace, into physical and social spaces, new security tasks and problems arise. As networks are extended by physical sensors and controllers, including the humans, and interlaced with social networks, the engineering concepts and techniques of computer security blend with the social processes of security. These new connectors for computational and social software require a new "discipline of programming" of global behaviors through local constraints. Since the new discipline seems to be emerging from a combination of established models of security protocols with older methods of procedural programming, we use the name procedures for these new connectors, that generalize protocols. In the present paper we propose actor-networks as a formal model of computation in heterogenous networks of computers, humans and their devices; and we introduce Procedure Derivation Logic (PDL) as a framework for reasoning about security in actor-networks. On the way, we survey the guiding ideas of Protocol Derivation Logic (also PDL) that evolved through our work in security in last 10 years. Both formalisms are geared towards graphic reasoning and tool support. We illustrate their workings by analysing a popular form of two-factor authentication, and a multi-channel device pairing procedure, devised for this occasion.Comment: 32 pages, 12 figures, 3 tables; journal submission; extended references, added discussio

    A formal methodology for integral security design and verification of network protocols

    Full text link
    We propose a methodology for verifying security properties of network protocols at design level. It can be separated in two main parts: context and requirements analysis and informal verification; and formal representation and procedural verification. It is an iterative process where the early steps are simpler than the last ones. Therefore, the effort required for detecting flaws is proportional to the complexity of the associated attack. Thus, we avoid wasting valuable resources for simple flaws that can be detected early in the verification process. In order to illustrate the advantages provided by our methodology, we also analyze three real protocols
    • …
    corecore