507 research outputs found

    How is a data-driven approach better than random choice in label space division for multi-label classification?

    Full text link
    We propose using five data-driven community detection approaches from social networks to partition the label space for the task of multi-label classification as an alternative to random partitioning into equal subsets as performed by RAkELd: modularity-maximizing fastgreedy and leading eigenvector, infomap, walktrap and label propagation algorithms. We construct a label co-occurence graph (both weighted an unweighted versions) based on training data and perform community detection to partition the label set. We include Binary Relevance and Label Powerset classification methods for comparison. We use gini-index based Decision Trees as the base classifier. We compare educated approaches to label space divisions against random baselines on 12 benchmark data sets over five evaluation measures. We show that in almost all cases seven educated guess approaches are more likely to outperform RAkELd than otherwise in all measures, but Hamming Loss. We show that fastgreedy and walktrap community detection methods on weighted label co-occurence graphs are 85-92% more likely to yield better F1 scores than random partitioning. Infomap on the unweighted label co-occurence graphs is on average 90% of the times better than random paritioning in terms of Subset Accuracy and 89% when it comes to Jaccard similarity. Weighted fastgreedy is better on average than RAkELd when it comes to Hamming Loss

    Hyperbolic Interaction Model For Hierarchical Multi-Label Classification

    Full text link
    Different from the traditional classification tasks which assume mutual exclusion of labels, hierarchical multi-label classification (HMLC) aims to assign multiple labels to every instance with the labels organized under hierarchical relations. Besides the labels, since linguistic ontologies are intrinsic hierarchies, the conceptual relations between words can also form hierarchical structures. Thus it can be a challenge to learn mappings from word hierarchies to label hierarchies. We propose to model the word and label hierarchies by embedding them jointly in the hyperbolic space. The main reason is that the tree-likeness of the hyperbolic space matches the complexity of symbolic data with hierarchical structures. A new Hyperbolic Interaction Model (HyperIM) is designed to learn the label-aware document representations and make predictions for HMLC. Extensive experiments are conducted on three benchmark datasets. The results have demonstrated that the new model can realistically capture the complex data structures and further improve the performance for HMLC comparing with the state-of-the-art methods. To facilitate future research, our code is publicly available

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Automatic refinement of large-scale cross-domain knowledge graphs

    Get PDF
    Knowledge graphs are a way to represent complex structured and unstructured information integrated into an ontology, with which one can reason about the existing information to deduce new information or highlight inconsistencies. Knowledge graphs are divided into the terminology box (TBox), also known as ontology, and the assertions box (ABox). The former consists of a set of schema axioms defining classes and properties which describe the data domain. Whereas the ABox consists of a set of facts describing instances in terms of the TBox vocabulary. In the recent years, there have been several initiatives for creating large-scale cross-domain knowledge graphs, both free and commercial, with DBpedia, YAGO, and Wikidata being amongst the most successful free datasets. Those graphs are often constructed with the extraction of information from semi-structured knowledge, such as Wikipedia, or unstructured text from the web using NLP methods. It is unlikely, in particular when heuristic methods are applied and unreliable sources are used, that the knowledge graph is fully correct or complete. There is a tradeoff between completeness and correctness, which is addressed differently in each knowledge graph’s construction approach. There is a wide variety of applications for knowledge graphs, e.g. semantic search and discovery, question answering, recommender systems, expert systems and personal assistants. The quality of a knowledge graph is crucial for its applications. In order to further increase the quality of such large-scale knowledge graphs, various automatic refinement methods have been proposed. Those methods try to infer and add missing knowledge to the graph, or detect erroneous pieces of information. In this thesis, we investigate the problem of automatic knowledge graph refinement and propose methods that address the problem from two directions, automatic refinement of the TBox and of the ABox. In Part I we address the ABox refinement problem. We propose a method for predicting missing type assertions using hierarchical multilabel classifiers and ingoing/ outgoing links as features. We also present an approach to detection of relation assertion errors which exploits type and path patterns in the graph. Moreover, we propose an approach to correction of relation errors originating from confusions between entities. Also in the ABox refinement direction, we propose a knowledge graph model and process for synthesizing knowledge graphs for benchmarking ABox completion methods. In Part II we address the TBox refinement problem. We propose methods for inducing flexible relation constraints from the ABox, which are expressed using SHACL.We introduce an ILP refinement step which exploits correlations between numerical attributes and relations in order to the efficiently learn Horn rules with numerical attributes. Finally, we investigate the introduction of lexical information from textual corpora into the ILP algorithm in order to improve quality of induced class expressions

    Text Classification

    Get PDF
    There is an abundance of text data in this world but most of it is raw. We need to extract information from this data to make use of it. One way to extract this information from raw text is to apply informative labels drawn from a pre-defined fixed set i.e. Text Classification. In this thesis, we focus on the general problem of text classification, and work towards solving challenges associated to binary/multi-class/multi-label classification. More specifically, we deal with the problem of (i) Zero-shot labels during testing; (ii) Active learning for text screening; (iii) Multi-label classification under low supervision; (iv) Structured label space; (v) Classifying pairs of words in raw text i.e. Relation Extraction. For (i), we use a zero-shot classification model that utilizes independently learned semantic embeddings. Regarding (ii), we propose a novel active learning algorithm that reduces problem of bias in naive active learning algorithms. For (iii), we propose neural candidate-selector architecture that starts from a set of high-recall candidate labels to obtain high-precision predictions. In the case of (iv), we proposed an attention based neural tree decoder that recursively decodes an abstract into the ontology tree. For (v), we propose using second-order relations that are derived by explicitly connecting pairs of words via context token(s) for improved relation extraction. We use a wide variety of both traditional and deep machine learning tools. More specifically, we used traditional machine learning models like multi-valued linear regression and logistic regression for (i, ii), deep convolutional neural networks for (iii), recurrent neural networks for (iv) and transformer networks for (v)
    corecore