19,693 research outputs found

    An Exponential Lower Bound for the Runtime of the cGA on Jump Functions

    Full text link
    In the first runtime analysis of an estimation-of-distribution algorithm (EDA) on the multi-modal jump function class, Hasen\"ohrl and Sutton (GECCO 2018) proved that the runtime of the compact genetic algorithm with suitable parameter choice on jump functions with high probability is at most polynomial (in the dimension) if the jump size is at most logarithmic (in the dimension), and is at most exponential in the jump size if the jump size is super-logarithmic. The exponential runtime guarantee was achieved with a hypothetical population size that is also exponential in the jump size. Consequently, this setting cannot lead to a better runtime. In this work, we show that any choice of the hypothetical population size leads to a runtime that, with high probability, is at least exponential in the jump size. This result might be the first non-trivial exponential lower bound for EDAs that holds for arbitrary parameter settings.Comment: To appear in the Proceedings of FOGA 2019. arXiv admin note: text overlap with arXiv:1903.1098

    Analysis of Different Types of Regret in Continuous Noisy Optimization

    Get PDF
    The performance measure of an algorithm is a crucial part of its analysis. The performance can be determined by the study on the convergence rate of the algorithm in question. It is necessary to study some (hopefully convergent) sequence that will measure how "good" is the approximated optimum compared to the real optimum. The concept of Regret is widely used in the bandit literature for assessing the performance of an algorithm. The same concept is also used in the framework of optimization algorithms, sometimes under other names or without a specific name. And the numerical evaluation of convergence rate of noisy algorithms often involves approximations of regrets. We discuss here two types of approximations of Simple Regret used in practice for the evaluation of algorithms for noisy optimization. We use specific algorithms of different nature and the noisy sphere function to show the following results. The approximation of Simple Regret, termed here Approximate Simple Regret, used in some optimization testbeds, fails to estimate the Simple Regret convergence rate. We also discuss a recent new approximation of Simple Regret, that we term Robust Simple Regret, and show its advantages and disadvantages.Comment: Genetic and Evolutionary Computation Conference 2016, Jul 2016, Denver, United States. 201
    • …
    corecore