155 research outputs found

    Structural Design using Cellular Automata

    Get PDF
    Traditional parallel methods for structural design do not scale well. This paper discusses the application of massively scalable cellular automata (CA) techniques to structural design. There are two sets of CA rules, one used to propagate stresses and strains, and one to perform design analysis. These rules can be applied serially,periodically,or concurrently, and Jacobi or Gauss- Seidel style updating can be done. These options are compared with respect to convergence,speed, and stability

    MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface

    Full text link
    Application development for distributed computing "Grids" can benefit from tools that variously hide or enable application-level management of critical aspects of the heterogeneous environment. As part of an investigation of these issues, we have developed MPICH-G2, a Grid-enabled implementation of the Message Passing Interface (MPI) that allows a user to run MPI programs across multiple computers, at the same or different sites, using the same commands that would be used on a parallel computer. This library extends the Argonne MPICH implementation of MPI to use services provided by the Globus Toolkit for authentication, authorization, resource allocation, executable staging, and I/O, as well as for process creation, monitoring, and control. Various performance-critical operations, including startup and collective operations, are configured to exploit network topology information. The library also exploits MPI constructs for performance management; for example, the MPI communicator construct is used for application-level discovery of, and adaptation to, both network topology and network quality-of-service mechanisms. We describe the MPICH-G2 design and implementation, present performance results, and review application experiences, including record-setting distributed simulations.Comment: 20 pages, 8 figure

    SNAP, Crackle, WebWindows!

    Get PDF
    We elaborate the SNAP---Scalable (ATM) Network and (PC) Platforms---view of computing in the year 2000. The World Wide Web will continue its rapid evolution, and in the future, applications will not be written for Windows NT/95 or UNIX, but rather for WebWindows with interfaces defined by the standards of Web servers and clients. This universal environment will support WebTop productivity tools, such as WebWord, WebLotus123, and WebNotes built in modular dynamic fashion, and undermining the business model for large software companies. We define a layered WebWindows software architecture in which applications are built on top of multi-use services. We discuss examples including business enterprise systems (IntraNets), health care, financial services and education. HPCC is implicit throughout this discussion for there is no larger parallel system than the World Wide metacomputer. We suggest building the MPP programming environment in terms of pervasive sustainable WebWindows technologies. In particular, WebFlow will support naturally dataflow integrating data and compute intensive applications on distributed heterogeneous systems

    An Application Perspective on High-Performance Computing and Communications

    Get PDF
    We review possible and probable industrial applications of HPCC focusing on the software and hardware issues. Thirty-three separate categories are illustrated by detailed descriptions of five areas -- computational chemistry; Monte Carlo methods from physics to economics; manufacturing; and computational fluid dynamics; command and control; or crisis management; and multimedia services to client computers and settop boxes. The hardware varies from tightly-coupled parallel supercomputers to heterogeneous distributed systems. The software models span HPF and data parallelism, to distributed information systems and object/data flow parallelism on the Web. We find that in each case, it is reasonably clear that HPCC works in principle, and postulate that this knowledge can be used in a new generation of software infrastructure based on the WebWindows approach, and discussed in an accompanying paper

    Approaches for MATLAB Applications Acceleration Using High Performance Reconfigurable Computers

    Get PDF
    A lot of raw computing power is needed in many scientific computing applications and simulations. MATLAB®† is one of the popular choices as a language for technical computing. Presented here are approaches for MATLAB based applications acceleration using High Performance Reconfigurable Computing (HPRC) machines. Typically, these are a cluster of Von Neumann architecture based systems with none or more FPGA reconfigurable boards. As a case study, an Image Correlation Algorithm has been ported on this architecture platform. As a second case study, the recursive training process in an Artificial Neural Network (ANN) to realize an optimum network has been accelerated, by porting it to HPC Systems. The approaches taken are analyzed with respect to target scenarios, end users perspective, programming efficiency and performance. Disclaimer: Some material in this text has been used and reproduced with appropriate references and permissions where required. † MATLAB® is a registered trademark of The Mathworks, Inc. ©1994-2003

    Simple Orchestration Application Framework to Control "Burning Plasma Integrated Code"

    Get PDF
    We have developed the Simple Orchestration Application Framework (SOAF) on a grid infrastructure to control cooperative and multiple execution of simulation codes on remote computers from a client PC. SOAF enables researchers to generate a scenario of their cooperative and multiple executions by only describing a configuration file which includes the information of execution codes and file flows among them. SOAF does not need substantial modification of the simulation codes. We have applied SOAF to the "Burning Plasma Integrated Code" which consists of various plasma simulation codes. In order to predict and interpret the behavior of fusion burning plasma, it is necessary to cooperatively and concurrently execute various simulation codes to understand complex plasma phenomena with wide temporal and spatial ranges. Those codes exist on distributed heterogeneous computers located in different sites such as universities and institutes. By using SOAF, we succeeded to cooperatively and concurrently execute four plasma simulation codes without substantial modification as described in the configuration file

    Users guide for mpich, a portable implementation of MPI

    Full text link
    corecore