14,899 research outputs found

    Understanding the Internet: Model, Metaphor, and Analogy

    Get PDF
    published or submitted for publicatio

    The Inter-Institutional Distribution of Power in EU Codecision

    Get PDF
    This paper analyzes the a priori influence of the European Parliament (EP) and the Council of Ministers (CM) on legislation of the European Union adopted under its codecision procedure. In contrast to studies which use conventional power indices, both institutions are assumed to act strategically. Predicted bargaining outcomes of the crucial Conciliation stage of codecision are shown to be strongly biased towards the legislative status quo. Making symmetric preference assumptions for members of CM and EP, CM is on average much more conservative because of its internal qualified majority rule. This makes CM by an order of magnitude more influential than EP, in contrast to a seeming formal parity between the two ‘co-legislators’.power measurement, European Union codecision procedure, bargaining, spatial voting, decision procedures

    A POWER INDEX BASED FRAMEWORKFOR FEATURE SELECTION PROBLEMS

    Get PDF
    One of the most challenging tasks in the Machine Learning context is the feature selection. It consists in selecting the best set of features to use in the training and prediction processes. There are several benefits from pruning the set of actually operational features: the consequent reduction of the computation time, often a better quality of the prediction, the possibility to use less data to create a good predictor. In its most common form, the problem is called single-view feature selection problem, to distinguish it from the feature selection task in Multi-view learning. In the latter, each view corresponds to a set of features and one would like to enact feature selection on each view, subject to some global constraints. A related problem in the context of Multi-View Learning, is Feature Partitioning: it consists in splitting the set of features of a single large view into two or more views so that it becomes possible to create a good predictor based on each view. In this case, the best features must be distributed between the views, each view should contain synergistic features, while features that interfere disruptively must be placed in different views. In the semi-supervised multi-view task known as Co-training, one requires also that each predictor trained on an individual view is able to teach something to the other views: in classification tasks for instance, one view should learn to classify unlabelled examples based on the guess provided by the other views. There are several ways to address these problems. A set of techniques is inspired by Coalitional Game Theory. Such theory defines several useful concepts, among which two are of high practical importance: the concept of power index and the concept of interaction index. When used in the context of feature selection, they take the following meaning: the power index is a (context-dependent) synthesis measure of the prediction\u2019s capability of a feature, the interaction index is a (context-dependent) synthesis measure of the interaction (constructive/disruptive interference) between two features: it can be used to quantify how the collaboration between two features enhances their prediction capabilities. An important point is that the powerindex of a feature is different from the predicting power of the feature in isolation: it takes into account, by a suitable averaging, the context, i.e. the fact that the feature is acting, together with other features, to train a model. Similarly, the interaction index between two features takes into account the context, by suitably averaging the interaction with all the other features. In this work we address both the single-view and the multi-view problems as follows. The single-view feature selection problem, is formalized as the problem of maximization of a pseudo-boolean function, i.e. a real valued set function (that maps sets of features into a performance metric). Since one has to enact a search over (a considerable portion of) the Boolean lattice (without any special guarantees, except, perhaps, positivity) the problem is in general NP-hard. We address the problem producing candidate maximum coalitions through the selection of the subset of features characterized by the highest power indices and using the coalition to approximate the actual maximum. Although the exact computation of the power indices is an exponential task, the estimates of the power indices for the purposes of the present problem can be achieved in polynomial time. The multi-view feature selection problem is formalized as the generalization of the above set-up to the case of multi-variable pseudo-boolean functions. The multi-view splitting problem is formalized instead as the problem of maximization of a real function defined over the partition lattice. Also this problem is typically NP-hard. However, candidate solutions can be found by suitably partitioning the top power-index features and keeping in different views the pairs of features that are less interactive or negatively interactive. The sum of the power indices of the participating features can be used to approximate the prediction capability of the view (i.e. they can be used as a proxy for the predicting power). The sum of the feature pair interactivity across views can be used as proxy for the orthogonality of the views. Also the capability of a view to pass information (to teach) to other views, within a co-training procedure can benefit from the use of power indices based on a suitable definition of information transfer (a set of features { a coalition { classifies examples that are subsequently used in the training of a second set of features). As to the feature selection task, not only we demonstrate the use of state of the art power index concepts (e.g. Shapley Value and Banzhaf along the 2lines described above Value), but we define new power indices, within the more general class of probabilistic power indices, that contains the Shapley and the Banzhaf Values as special cases. Since the number of features to select is often a predefined parameter of the problem, we also introduce some novel power indices, namely k-Power Index (and its specializations k-Shapley Value, k-Banzhaf Value): they help selecting the features in a more efficient way. For the feature partitioning, we use the more general class of probabilistic interaction indices that contains the Shapley and Banzhaf Interaction Indices as members. We also address the problem of evaluating the teaching ability of a view, introducing a suitable teaching capability index. The last contribution of the present work consists in comparing the Game Theory approach to the classical Greedy Forward Selection approach for feature selection. In the latter the candidate is obtained by aggregating one feature at time to the current maximal coalition, by choosing always the feature with the maximal marginal contribution. In this case we show that in typical cases the two methods are complementary, and that when used in conjunction they reduce one another error in the estimate of the maximum value. Moreover, the approach based on game theory has two advantages: it samples the space of all possible features\u2019 subsets, while the greedy algorithm scans a selected subspace excluding totally the rest of it, and it is able, for each feature, to assign a score that describes a context-aware measure of importance in the prediction process

    Sharing and Cooperation in Markets and Organizations: Axiomatic Foundations for the Laws of Coalition Formation in Selected Scenarios

    Get PDF
    Interactions involving multiple parties and necessitating their agreement are pervasive in both market and non-market settings. As the number of participants increases, these situations become progressively complex to describe and analyze. Despite the prolific nature of such scenarios, a comprehensive conceptual framework addressing such settings is often lacking. The focus of this dissertation lies in a distinct type of multilateral interaction, where a commitment of a group, or a coalition, of participants is required for achieving a positive surplus. The analysis encompasses three scenarios, namely, government formation in parliamentary democracies, bilateral trading on a market with multiple buyers and sellers, and resource allocation in the US presidential campaign. This dissertation proposes an approach that provides axiomatic foundations for a theory of coalition formation in these settings, and, for two of these scenarios, simultaneously provides an empirically accurate forecast methodology

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    Characterizing and Detecting Unrevealed Elements of Network Systems

    Get PDF
    This dissertation addresses the problem of discovering and characterizing unknown elements in network systems. Klir (1985) provides a general definition of a system as “... a set of some things and a relation among the things (p. 4). A system, where the `things\u27, i.e. nodes, are related through links is a network system (Klir, 1985). The nodes can represent a range of entities such as machines or people (Pearl, 2001; Wasserman & Faust, 1994). Likewise, links can represent abstract relationships such as causal influence or more visible ties such as roads (Pearl, 1988, pp. 50-51; Wasserman & Faust, 1994; Winston, 1994, p. 394). It is not uncommon to have incomplete knowledge of network systems due to either passive circumstances, e.g. limited resources to observe a network, active circumstances, e.g. intentional acts of concealment, or some combination of active and passive influences (McCormick & Owen, 2000, p. 175; National Research Council, 2005, pp. 7, 11). This research provides statistical and graph theoretic approaches for such situations, including those in which nodes are causally related (Geiger & Pearl, 1990, pp. 3, 10; Glymour, Scheines, Spirtes, & Kelly, 1987, pp. 75-86, 178183; Murphy, 1998; Verma & Pearl, 1991, pp. 257, 260, 264-265). A related aspect of this research is accuracy assessment. It is possible an analyst could fail to detect a network element, or be aware of network elements, but incorrectly conclude the associated network system structure (Borgatti, Carley, & Krackhardt, 2006). The possibilities require assessment of the accuracy of the observed and conjectured network systems, and this research provides a means to do so (Cavallo & Klir, 1979, p. 143; Kelly, 1957, p. 968)
    • …
    corecore