98 research outputs found

    Extending SATPLAN to Multiple Agents

    Full text link

    Planning as Quantified Boolean Formulae

    Get PDF
    This work explores the idea of classical Planning as Quantified Boolean Formulae. Planning as Satisfiability (SAT) is a popular approach to Planning and has been explored in detail producing many compact and efficient encodings, Planning-specific solver implementations and innovative new constraints. However, Planning as Quantified Boolean Formulae (QBF) has been relegated to conformant Planning approaches, with the exception of one encoding that has not yet been investigated in detail. QBF is a promising setting for Planning given that the problems have the same complexity. This work introduces two approaches for translating bounded propositional reachability problems into QBF. Both exploit the expressivity of the binarytree structure of the QBF problem to produce encodings that are as small as logarithmic in the size of the instance and thus exponentially smaller than the corresponding SAT encoding with the same bound. The first approach builds on the iterative squaring formulation of Rintanen; the intuition behind the idea is to recursively fold the plan around the midpoint, reducing the number of time-steps that need to be described from n to logâ‚‚n. The second approach exploits domain-level lifting to achieve significant improvements in efficiency. Experimentation was performed to compare our formulation of the first approach with the previous formulation, and to compare both approaches with comparative and state-of-the-art SAT approaches. Results presented in this work show that our formulation of the first approach is an improvement over the previous, and that both approaches produce encodings that are indeed much smaller than corresponding SAT encodings, in both terms of encoding size and memory used during solving. Evidence is also provided to show that the first approach is feasible, if not yet competitive with the state-of-the-art, and that the second approach produces superior encodings to the SAT encodings when the domain is suited to domain-level lifting.This work explores the idea of classical Planning as Quantified Boolean Formulae. Planning as Satisfiability (SAT) is a popular approach to Planning and has been explored in detail producing many compact and efficient encodings, Planning-specific solver implementations and innovative new constraints. However, Planning as Quantified Boolean Formulae (QBF) has been relegated to conformant Planning approaches, with the exception of one encoding that has not yet been investigated in detail. QBF is a promising setting for Planning given that the problems have the same complexity. This work introduces two approaches for translating bounded propositional reachability problems into QBF. Both exploit the expressivity of the binarytree structure of the QBF problem to produce encodings that are as small as logarithmic in the size of the instance and thus exponentially smaller than the corresponding SAT encoding with the same bound. The first approach builds on the iterative squaring formulation of Rintanen; the intuition behind the idea is to recursively fold the plan around the midpoint, reducing the number of time-steps that need to be described from n to logâ‚‚n. The second approach exploits domain-level lifting to achieve significant improvements in efficiency. Experimentation was performed to compare our formulation of the first approach with the previous formulation, and to compare both approaches with comparative and state-of-the-art SAT approaches. Results presented in this work show that our formulation of the first approach is an improvement over the previous, and that both approaches produce encodings that are indeed much smaller than corresponding SAT encodings, in both terms of encoding size and memory used during solving. Evidence is also provided to show that the first approach is feasible, if not yet competitive with the state-of-the-art, and that the second approach produces superior encodings to the SAT encodings when the domain is suited to domain-level lifting

    Contingent planning under uncertainty via stochastic satisfiability

    Get PDF
    We describe a new planning technique that efficiently solves probabilistic propositional contingent planning problems by converting them into instances of stochastic satisfiability (SSAT) and solving these problems instead. We make fundamental contributions in two areas: the solution of SSAT problems and the solution of stochastic planning problems. This is the first work extending the planning-as-satisfiability paradigm to stochastic domains. Our planner, ZANDER, can solve arbitrary, goal-oriented, finite-horizon partially observable Markov decision processes (POMDPs). An empirical study comparing ZANDER to seven other leading planners shows that its performance is competitive on a range of problems. © 2003 Elsevier Science B.V. All rights reserved

    Portfolio-based Planning: State of the Art, Common Practice and Open Challenges

    Get PDF
    In recent years the field of automated planning has significantly advanced and several powerful domain-independent planners have been developed. However, none of these systems clearly outperforms all the others in every known benchmark domain. This observation motivated the idea of configuring and exploiting a portfolio of planners to perform better than any individual planner: some recent planning systems based on this idea achieved significantly good results in experimental analysis and International Planning Competitions. Such results let us suppose that future challenges of the Automated Planning community will converge on designing different approaches for combining existing planning algorithms. This paper reviews existing techniques and provides an exhaustive guide to portfolio-based planning. In addition, the paper outlines open issues of existing approaches and highlights possible future evolution of these techniques

    Learning for Classical Planning

    Get PDF
    This thesis is mainly about classical planning for artificial intelligence (AI). In planning, we deal with searching for a sequence of actions that changes the environment from a given initial state to a goal state. Planning problems in general are ones of the hardest problems not only in the area of AI, but in the whole computer science. Even though classical planning problems do not consider many aspects from the real world, their complexity reaches EXPSPACE-completeness. Nevertheless, there exist many planning systems (not only for classical planning) that were developed in the past, mainly thanks to the International Planning Competitions (IPC). Despite the current planning systems are very advanced, we have to boost these systems with additional knowledge provided by learning. In this thesis, we focused on developing learning techniques which produce additional knowledge from the training plans and transform it back into planning do mains and problems. We do not have to modify the planners. The contribution of this thesis is included in three areas. First, we provided theoretical background for plan analysis by investigating action dependencies or independencies. Second, we provided a method for generating macro-operators and removing unnecessary primitive operators. Experimental evaluation of this...Katedra teoretické informatiky a matematické logikyDepartment of Theoretical Computer Science and Mathematical LogicFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Planification SAT et Planification Temporellement Expressive. Les Systèmes TSP et TLP-GP.

    Get PDF
    This thesis deals with Artificial Intelligence planning. After introducing the domain and the main algorithms in the classical framework of planning, we present a state of the art of SAT planning. We analyse in detail this approach which allows us to benefit directly from improvements brought regularly to SAT solvers. We propose new encodings integrating a least-commitment strategy postponing as much as possible the scheduling of actions. We then introduce the TSP system which we have implemented to equitably compare the different encodings and we detail the results of numerous experimental tests which show the superiority of our encodings in comparison with the existing ones. We introduce then a state of the art of temporal planning by analysing algorithms and expressiveness of their representation languages. The great majority of these planners do not allow us to solve real problems for which the concurrency of actions is required. We then detail the two original approaches of our TLP-GP system which allow us to solve this type of problem. As with SAT planning, a large part of search work is delegated to a SMT solver. We then propose extensions of the PDDL planning language which allows us to a certain extent to take into account uncertainty, choice, or continuous transitions. We show finally, thanks to an experimental study, that our algorithms allow us to solve real problems requiring numerous concurrent actions.Cette thèse s'inscrit dans le cadre de la planification de tâches en intelligence artificielle. Après avoir introduit le domaine et les principaux algorithmes de planification dans le cadre classique, nous présentons un état de l'art de la planification SAT. Nous analysons en détail cette approche qui permet de bénéficier directement des améliorations apportées régulièrement aux solveurs SAT. Nous proposons de nouveaux codages qui intègrent une stratégie de moindre engagement en retardant le plus possible l'ordonnancement des actions. Nous présentons ensuite le système TSP que nous avons implémenté pour comparer équitablement les différents codages puis nous détaillons les résultats de nombreux tests expérimentaux qui démontrent la supériorité de nos codages par rapport aux codages existants. Nous présentons ensuite un état de l'art de la planification temporelle en analysant les algorithmes et l'expressivité de leurs langages de représentation. La très grande majorité de ces planificateurs ne permet pas de résoudre des problèmes réels pour lesquels la concurrence des actions est nécessaire. Nous détaillons alors les deux approches originales de notre système TLP-GP permettant de résoudre ce type de problèmes. Ces approches sont comparables à la planification SAT, une grande partie du travail de recherche étant déléguée à un solveur SMT. Nous proposons ensuite des extensions du langage de planification PDDL qui permettent une certaine prise en compte de l'incertitude, du choix, ou des transitions continues. Nous montrons enfin, grâce à une étude expérimentale, que nos algorithmes permettent de résoudre des problèmes réels nécessitant de nombreuses actions concurrentes
    • …
    corecore