130,333 research outputs found

    Extended RBAC with role attributes

    Get PDF
    Though RBAC has been researched for many years as a current dominant access control technology, there are few researches to be done to address the further extension of the role which is the fundamental entity of RBAC. This paper tries to extend the role to a further level, the role attributes. Through the attributes, the function and operation on the role can be enhanced and extended. Through the attributes, ANSI RBAC is significantly extended. In the inheritance of hierarchical role, the privacy of its parental role can be kept by using HA (Hidden Attribute)

    A Declarative Framework for Specifying and Enforcing Purpose-aware Policies

    Full text link
    Purpose is crucial for privacy protection as it makes users confident that their personal data are processed as intended. Available proposals for the specification and enforcement of purpose-aware policies are unsatisfactory for their ambiguous semantics of purposes and/or lack of support to the run-time enforcement of policies. In this paper, we propose a declarative framework based on a first-order temporal logic that allows us to give a precise semantics to purpose-aware policies and to reuse algorithms for the design of a run-time monitor enforcing purpose-aware policies. We also show the complexity of the generation and use of the monitor which, to the best of our knowledge, is the first such a result in literature on purpose-aware policies.Comment: Extended version of the paper accepted at the 11th International Workshop on Security and Trust Management (STM 2015

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Possibilistic Information Flow Control for Workflow Management Systems

    Full text link
    In workflows and business processes, there are often security requirements on both the data, i.e. confidentiality and integrity, and the process, e.g. separation of duty. Graphical notations exist for specifying both workflows and associated security requirements. We present an approach for formally verifying that a workflow satisfies such security requirements. For this purpose, we define the semantics of a workflow as a state-event system and formalise security properties in a trace-based way, i.e. on an abstract level without depending on details of enforcement mechanisms such as Role-Based Access Control (RBAC). This formal model then allows us to build upon well-known verification techniques for information flow control. We describe how a compositional verification methodology for possibilistic information flow can be adapted to verify that a specification of a distributed workflow management system satisfies security requirements on both data and processes.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Security Policy Specification Using a Graphical Approach

    Full text link
    A security policy states the acceptable actions of an information system, as the actions bear on security. There is a pressing need for organizations to declare their security policies, even informal statements would be better than the current practice. But, formal policy statements are preferable to support (1) reasoning about policies, e.g., for consistency and completeness, (2) automated enforcement of the policy, e.g., using wrappers around legacy systems or after the fact with an intrusion detection system, and (3) other formal manipulation of policies, e.g., the composition of policies. We present LaSCO, the Language for Security Constraints on Objects, in which a policy consists of two parts: the domain (assumptions about the system) and the requirement (what is allowed assuming the domain is satisfied). Thus policies defined in LaSCO have the appearance of conditional access control statements. LaSCO policies are specified as expressions in logic and as directed graphs, giving a visual view of policy. LaSCO has a simple semantics in first order logic (which we provide), thus permitting policies we write, even for complex policies, to be very perspicuous. LaSCO has syntax to express many of the situations we have found to be useful on policies or, more interesting, the composition of policies. LaSCO has an object-oriented structure, permitting it to be useful to describe policies on the objects and methods of an application written in an object-oriented language, in addition to the traditional policies on operating system objects. A LaSCO specification can be automatically translated into executable code that checks an invocation of a program with respect to a policy. The implementation of LaSCO is in Java, and generates wrappers to check Java programs with respect to a policy.Comment: 28 pages, 22 figures, in color (but color is not essential for viewing); UC Davis CS department technical report (July 22, 1998
    • ā€¦
    corecore