10,059 research outputs found

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    Many-valued logics. A mathematical and computational introduction.

    Get PDF
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and they are today in more demand than ever, due to the realization that inconsistency and vagueness in knowledge bases and information processes are not only inevitable and acceptable, but also perhaps welcome. The main modern applications of (any) logic are to be found in the digital computer, and we thus require the practical knowledge how to computerize—which also means automate—decisions (i.e. reasoning) in many-valued logics. This, in turn, necessitates a mathematical foundation for these logics. This book provides both these mathematical foundation and practical knowledge in a rigorous, yet accessible, text, while at the same time situating these logics in the context of the satisfiability problem (SAT) and automated deduction. The main text is complemented with a large selection of exercises, a plus for the reader wishing to not only learn about, but also do something with, many-valued logics

    Neutrality and Many-Valued Logics

    Get PDF
    In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.Comment: 119 page

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory

    About Nonstandard Neutrosophic Logic (Answers to Imamura 'Note on the Definition of Neutrosophic Logic')

    Full text link
    In order to more accurately situate and fit the neutrosophic logic into the framework of nonstandard analysis, we present the neutrosophic inequalities, neutrosophic equality, neutrosophic infimum and supremum, neutrosophic standard intervals, including the cases when the neutrosophic logic standard and nonstandard components T, I, F get values outside of the classical real unit interval [0, 1], and a brief evolution of neutrosophic operators. The paper intends to answer Imamura criticism that we found benefic in better understanding the nonstandard neutrosophic logic, although the nonstandard neutrosophic logic was never used in practical applications.Comment: 16 page
    • …
    corecore