3,811 research outputs found

    Development, test and comparison of two Multiple Criteria Decision Analysis(MCDA) models: A case of healthcare infrastructure location

    Get PDF
    When planning a new development, location decisions have always been a major issue. This paper examines and compares two modelling methods used to inform a healthcare infrastructure location decision. Two Multiple Criteria Decision Analysis (MCDA) models were developed to support the optimisation of this decision-making process, within a National Health Service (NHS) organisation, in the UK. The proposed model structure is based on seven criteria (environment and safety, size, total cost, accessibility, design, risks and population profile) and 28 sub-criteria. First, Evidential Reasoning (ER) was used to solve the model, then, the processes and results were compared with the Analytical Hierarchy Process (AHP). It was established that using ER or AHP led to the same solutions. However, the scores between the alternatives were significantly different; which impacted the stakeholders‟ decision-making. As the processes differ according to the model selected, ER or AHP, it is relevant to establish the practical and managerial implications for selecting one model or the other and providing evidence of which models best fit this specific environment. To achieve an optimum operational decision it is argued, in this study, that the most transparent and robust framework is achieved by merging ER process with the pair-wise comparison, an element of AHP. This paper makes a defined contribution by developing and examining the use of MCDA models, to rationalise new healthcare infrastructure location, with the proposed model to be used for future decision. Moreover, very few studies comparing different MCDA techniques were found, this study results enable practitioners to consider even further the modelling characteristics to ensure the development of a reliable framework, even if this means applying a hybrid approach

    Multicriteria analysis under uncertainty with IANUS - method and empirical results

    Get PDF
    IANUS is a method for aiding public decision-making that supports efforts towards sustainable development and has a wide range of application. IANUS stands for Integrated Assessment of Decisions uNder Uncertainty for Sustainable Development. This paper introduces the main features of IANUS and illustrates the method using the results of a case study in the Torgau region (eastern Germany). IANUS structures the decision process into four steps: scenario derivation, criteria selection, modeling, evaluation. Its overall aim is to extract the information needed for a sound, responsible decision in a clear, transparent manner. The method is designed for use in conflict situations where environmental and socioeconomic effects need to be considered and so an interdisciplinary approach is required. Special emphasis is placed on a broad perception and consideration of uncertainty. Three types of uncertainty are explicitly taken into account by IANUS: development uncertainty (uncertainty about the social, economic and other developments that affect the consequences of decision), model uncertainty (uncertainty associated with the prediction of the effects of decisions), and weight uncertainty (uncertainty about the appropriate weighting of the criteria). The backbone of IANUS is a multicriteria method with the ability to process uncertain information. In the case study the multicriteria method PROMETHEE is used. Since PROMETHEE in its basic versions is not able to process uncertain information an extension of this method is developed here and described in detail. --

    Decision map for spatial decision making in urban planning

    Get PDF
    In this paper, we introduce the concept of decision map and illustrate the way this new concept can be used effectively to support participation in spatial decision making and in urban planning. First, we start by introducing our spatial decision process which is composed of five, non-necessary sequential, phases: problem identification and formulation, analysis, negotiation, concertation, and evaluation and choice. Negotiation and concertation are two main phases in spatial decision making but most available frameworks do not provide tools to support them effectively. The solution proposed here is based on the concept of decision map which is defined as an advanced version of conventional geographic maps which is enriched with preferential information and especially designed to clarify decision making. It looks like a set of homogenous spatial units; each one is characterised with a global, often ordinal, evaluation that represents an aggregation of several partial evaluations relative to different criteria. The decision map is also enriched with different spatial data exploration tools. The procedure of the construction of a decision map contains four main steps: definition of the problem (i.e. generation of criteria maps), generation of an intermediate map, inference of preferential parameters, and generation of a final decision map. The concept of decision map as defined here is a generic tool that may be applied in different domains. This paper focuses on the role of the decision map in supporting participation in spatial decision making and urban planning. Indeed, the decision map is an efficient communication tool in the sense that it permits to the different groups implied in the spatial decision process to ‘think visually’ and to communicate better between each other.ou

    Modelling fraud detection by attack trees and Choquet integral

    Get PDF
    Modelling an attack tree is basically a matter of associating a logical ÒndÓand a logical ÒrÓ but in most of real world applications related to fraud management the Ònd/orÓlogic is not adequate to effectively represent the relationship between a parent node and its children, most of all when information about attributes is associated to the nodes and the main problem to solve is how to promulgate attribute values up the tree through recursive aggregation operations occurring at the Ònd/orÓnodes. OWA-based aggregations have been introduced to generalize ÒndÓand ÒrÓoperators starting from the observation that in between the extremes Òor allÓ(and) and Òor anyÓ(or), terms (quantifiers) like ÒeveralÓ ÒostÓ ÒewÓ ÒomeÓ etc. can be introduced to represent the different weights associated to the nodes in the aggregation. The aggregation process taking place at an OWA node depends on the ordered position of the child nodes but it doesnÕ take care of the possible interactions between the nodes. In this paper, we propose to overcome this drawback introducing the Choquet integral whose distinguished feature is to be able to take into account the interaction between nodes. At first, the attack tree is valuated recursively through a bottom-up algorithm whose complexity is linear versus the number of nodes and exponential for every node. Then, the algorithm is extended assuming that the attribute values in the leaves are unimodal LR fuzzy numbers and the calculation of Choquet integral is carried out using the alpha-cuts.Fraud detection; attack tree; ordered weighted averaging (OWA) operator; Choquet integral; fuzzy numbers.

    Modelling multicriteria value interactions with Reasoning Maps

    Get PDF
    Idiographic causal maps are extensively employed in Operational Research to support problem structuring and complex decision making processes. They model means-end or causal discourses as a network of concepts connected by links denoting influence, thus enabling the representation of chains of arguments made by decision-makers. There have been proposals to employ such structures to support the structuring of multicriteria evaluation models, within an additive value measurement framework. However, a drawback of this multi-methodological modelling is the loss of richness of interactions along the means-end chains when evaluating options. This has led to the development of methods that make use of the structure of the map itself to evaluate options, such as the Reasoning Maps method, which employs ordinal scales and ordinal operators for such evaluation. However, despite their potential, Reasoning Maps cannot model explicitly value interactions nor perform a quantitative ranking of options, limiting their applicability and usefulness. In this article we propose extending the Reasoning Maps approach through a multilinear evaluation model structure, built with the MACBETH multicriteria method. The model explicitly captures the value interactions between concepts along the map and employs the MACBETH protocol of questioning to assess the strength of influence for each means-end link. The feasibility of the proposed approach to evaluate options and to deal with multicriteria interactions is tested in a real-world application to support the construction of a population health index

    Managing Interacting Criteria: Application to Environmental Evaluation Practices

    Get PDF
    The need for organizations to evaluate their environmental practices has been recently increasing. This fact has led to the development of many approaches to appraise such practices. In this paper, a novel decision model to evaluate company’s environmental practices is proposed to improve traditional evaluation process in different facets. Firstly, different reviewers’ collectives related to the company’s activity are taken into account in the process to increase company internal efficiency and external legitimacy. Secondly, following the standard ISO 14031, two general categories of environmental performance indicators, management and operational, are considered. Thirdly, since the assumption of independence among environmental indicators is rarely verified in environmental context, an aggregation operator to bear in mind the relationship among such indicators in the evaluation results is proposed. Finally, this new model integrates quantitative and qualitative information with different scales using a multi-granular linguistic model that allows to adapt diverse evaluation scales according to appraisers’ knowledge
    corecore