323 research outputs found

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    A sequential semidefinite programming method and an application in passive reduced-order modeling

    Full text link
    We consider the solution of nonlinear programs with nonlinear semidefiniteness constraints. The need for an efficient exploitation of the cone of positive semidefinite matrices makes the solution of such nonlinear semidefinite programs more complicated than the solution of standard nonlinear programs. In particular, a suitable symmetrization procedure needs to be chosen for the linearization of the complementarity condition. The choice of the symmetrization procedure can be shifted in a very natural way to certain linear semidefinite subproblems, and can thus be reduced to a well-studied problem. The resulting sequential semidefinite programming (SSP) method is a generalization of the well-known SQP method for standard nonlinear programs. We present a sensitivity result for nonlinear semidefinite programs, and then based on this result, we give a self-contained proof of local quadratic convergence of the SSP method. We also describe a class of nonlinear semidefinite programs that arise in passive reduced-order modeling, and we report results of some numerical experiments with the SSP method applied to problems in that class

    Survey of sequential convex programming and generalized Gauss-Newton methods*

    Get PDF
    We provide an overview of a class of iterative convex approximation methods for nonlinear optimization problems with convex-over-nonlinear substructure. These problems are characterized by outer convexities on the one hand, and nonlinear, generally nonconvex, but differentiable functions on the other hand. All methods from this class use only first order derivatives of the nonlinear functions and sequentially solve convex optimization problems. All of them are different generalizations of the classical Gauss-Newton (GN) method. We focus on the smooth constrained case and on three methods to address it: Sequential Convex Programming (SCP), Sequential Convex Quadratic Programming (SCQP), and Sequential Quadratically Constrained Quadratic Programming (SQCQP). While the first two methods were previously known, the last is newly proposed and investigated in this paper. We show under mild assumptions that SCP, SCQP and SQCQP have exactly the same local linear convergence – or divergence – rate. We then discuss the special case in which the solution is fully determined by the active constraints, and show that for this case the KKT conditions are sufficient for local optimality and that SCP, SCQP and SQCQP even converge quadratically. In the context of parameter estimation with symmetric convex loss functions, the possible divergence of the methods can in fact be an advantage that helps them to avoid some undesirable local minima: generalizing existing results, we show that the presented methods converge to a local minimum if and only if this local minimum is stable against a mirroring operation applied to the measurement data of the estimation problem. All results are illustrated by numerical experiments on a tutorial example
    • …
    corecore