354 research outputs found

    Towards a Reliable Framework of Uncertainty-Based Group Decision Support System

    Full text link
    This study proposes a framework of Uncertainty-based Group Decision Support System (UGDSS). It provides a platform for multiple criteria decision analysis in six aspects including (1) decision environment, (2) decision problem, (3) decision group, (4) decision conflict, (5) decision schemes and (6) group negotiation. Based on multiple artificial intelligent technologies, this framework provides reliable support for the comprehensive manipulation of applications and advanced decision approaches through the design of an integrated multi-agents architecture.Comment: Accepted paper in IEEE-ICDM2010; Print ISBN: 978-1-4244-9244-

    Robust ordinal regression for value functions handling interacting criteria

    Get PDF
    International audienceWe present a new method called UTAGMS–INT for ranking a finite set of alternatives evaluated on multiple criteria. It belongs to the family of Robust Ordinal Regression (ROR) methods which build a set of preference models compatible with preference information elicited by the Decision Maker (DM). The preference model used by UTAGMS–INT is a general additive value function augmented by two types of components corresponding to ‘‘bonus’’ or ‘‘penalty’’ values for positively or negatively interacting pairs of criteria, respectively. When calculating value of a particular alternative, a bonus is added to the additive component of the value function if a given pair of criteria is in a positive synergy for performances of this alternative on the two criteria. Similarly, a penalty is subtracted from the additive component of the value function if a given pair of criteria is in a negative synergy for performances of the considered alternative on the two criteria. The preference information elicited by the DM is composed of pairwise comparisons of some reference alternatives, as well as of comparisons of some pairs of reference alternatives with respect to intensity of preference, either comprehensively or on a particular criterion. In UTAGMS–INT, ROR starts with identification of pairs of interacting criteria for given preference information by solving a mixed-integer linear program. Once the interacting pairs are validated by the DM, ROR continues calculations with the whole set of compatible value functions handling the interacting criteria, to get necessary and possible preference relations in the considered set of alternatives. A single representative value function can be calculated to attribute specific scores to alternatives. It also gives values to bonuses and penalties. UTAGMS–INT handles quite general interactions among criteria and provides an interesting alternative to the Choquet integral

    Multiple Criteria Assessment of Insulating Materials with a Group Decision Framework Incorporating Outranking Preference Model and Characteristic Class Profiles

    Get PDF
    We present a group decision making framework for evaluating sustainability of the insulating materials. We tested thirteen materials on a model that was applied to retrofit a traditional rural building through roof's insulation. To evaluate the materials from the socio-economic and environmental viewpoints, we combined life cycle costing and assessment with an adaptive comfort evaluation. In this way, the performances of each coating material were measured in terms of an incurred reduction of costs and consumption of resources, maintenance of the cultural and historic significance of buildings, and a guaranteed indoor thermal comfort. The comprehensive assessment of the materials involved their assignment to one of the three preference-ordered sustainability classes. For this purpose, we used a multiple criteria decision analysis approach that accounted for preferences of a few tens of rural buildings' owners. The proposed methodological framework incorporated an outranking-based preference model to compare the insulating materials with the characteristic class profiles while using the weights derived from the revised Simos procedure. The initial sorting recommendation for each material was validated against the outcomes of robustness analysis that combined the preferences of individual stakeholders either at the output or at the input level. The analysis revealed that the most favorable materials in terms of their overall sustainability were glass wool, hemp fibres, kenaf fibres, polystyrene foam, polyurethane, and rock wool

    Rough set and rule-based multicriteria decision aiding

    Get PDF
    The aim of multicriteria decision aiding is to give the decision maker a recommendation concerning a set of objects evaluated from multiple points of view called criteria. Since a rational decision maker acts with respect to his/her value system, in order to recommend the most-preferred decision, one must identify decision maker's preferences. In this paper, we focus on preference discovery from data concerning some past decisions of the decision maker. We consider the preference model in the form of a set of "if..., then..." decision rules discovered from the data by inductive learning. To structure the data prior to induction of rules, we use the Dominance-based Rough Set Approach (DRSA). DRSA is a methodology for reasoning about data, which handles ordinal evaluations of objects on considered criteria and monotonic relationships between these evaluations and the decision. We review applications of DRSA to a large variety of multicriteria decision problems

    Dominance-based Rough Set Approach, basic ideas and main trends

    Full text link
    Dominance-based Rough Approach (DRSA) has been proposed as a machine learning and knowledge discovery methodology to handle Multiple Criteria Decision Aiding (MCDA). Due to its capacity of asking the decision maker (DM) for simple preference information and supplying easily understandable and explainable recommendations, DRSA gained much interest during the years and it is now one of the most appreciated MCDA approaches. In fact, it has been applied also beyond MCDA domain, as a general knowledge discovery and data mining methodology for the analysis of monotonic (and also non-monotonic) data. In this contribution, we recall the basic principles and the main concepts of DRSA, with a general overview of its developments and software. We present also a historical reconstruction of the genesis of the methodology, with a specific focus on the contribution of Roman S{\l}owi\'nski.Comment: This research was partially supported by TAILOR, a project funded by European Union (EU) Horizon 2020 research and innovation programme under GA No 952215. This submission is a preprint of a book chapter accepted by Springer, with very few minor differences of just technical natur

    An Extended Single-Valued Neutrosophic Projection-Based Qualitative Flexible Multi-Criteria Decision-Making Method

    Get PDF
    With respect to multi-criteria decision-making (MCDM) problems in which the criteria denote the form of single-valued neutrosophic sets (SVNSs), and the weight information is also fully unknown, a novel MCDM method based on qualitative flexible multiple criteria (QUALIFLEX) is developed. Firstly, the improved cosine measure of the included angle between two SVNSs is defined

    Implementation of stochastic multi attribute analysis (SMAA) in comparative environmental assessments

    Get PDF
    The selection of an alternative based on the results of a comparative environmental assessment such as life cycle assessment (LCA), environmental input-output analysis (EIOA) or integrated assessment modelling (IAM) is challenging because most of the times there is no single best option. Most comparative cases contain trade-offs between environmental criteria, uncertainty in the performances and multiple diverse values from decision makers. To circumvent these challenges, a method from decision analysis, namely stochastic multi attribute analysis (SMAA), has been proposed instead. SMAA performs aggregation that is partially compensatory (hence, closer to a strong sustainability perspective), incorporates performance uncertainty in the assessment, is free from external normalization references and allows for uncertainties in decision maker preferences. This paper presents a thorough introduction of SMAA for environmental decision-support, provides the mathematical fundamentals and offers an Excel platform for easy implementation and access
    • 

    corecore