2,846 research outputs found

    Left Recursion in Parsing Expression Grammars

    Full text link
    Parsing Expression Grammars (PEGs) are a formalism that can describe all deterministic context-free languages through a set of rules that specify a top-down parser for some language. PEGs are easy to use, and there are efficient implementations of PEG libraries in several programming languages. A frequently missed feature of PEGs is left recursion, which is commonly used in Context-Free Grammars (CFGs) to encode left-associative operations. We present a simple conservative extension to the semantics of PEGs that gives useful meaning to direct and indirect left-recursive rules, and show that our extensions make it easy to express left-recursive idioms from CFGs in PEGs, with similar results. We prove the conservativeness of these extensions, and also prove that they work with any left-recursive PEG. PEGs can also be compiled to programs in a low-level parsing machine. We present an extension to the semantics of the operations of this parsing machine that let it interpret left-recursive PEGs, and prove that this extension is correct with regards to our semantics for left-recursive PEGs.Comment: Extended version of the paper "Left Recursion in Parsing Expression Grammars", that was published on 2012 Brazilian Symposium on Programming Language

    Parsing Expression Grammars Made Practical

    Full text link
    Parsing Expression Grammars (PEGs) define languages by specifying recursive-descent parser that recognises them. The PEG formalism exhibits desirable properties, such as closure under composition, built-in disambiguation, unification of syntactic and lexical concerns, and closely matching programmer intuition. Unfortunately, state of the art PEG parsers struggle with left-recursive grammar rules, which are not supported by the original definition of the formalism and can lead to infinite recursion under naive implementations. Likewise, support for associativity and explicit precedence is spotty. To remedy these issues, we introduce Autumn, a general purpose PEG library that supports left-recursion, left and right associativity and precedence rules, and does so efficiently. Furthermore, we identify infix and postfix operators as a major source of inefficiency in left-recursive PEG parsers and show how to tackle this problem. We also explore the extensibility of the PEG paradigm by showing how one can easily introduce new parsing operators and how our parser accommodates custom memoization and error handling strategies. We compare our parser to both state of the art and battle-tested PEG and CFG parsers, such as Rats!, Parboiled and ANTLR.Comment: "Proceedings of the International Conference on Software Language Engineering (SLE 2015)" - 167-172 (ISBN : 978-1-4503-3686-4

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    Higher-Order Operator Precedence Languages

    Get PDF
    Floyd's Operator Precedence (OP) languages are a deterministic context-free family having many desirable properties. They are locally and parallely parsable, and languages having a compatible structure are closed under Boolean operations, concatenation and star; they properly include the family of Visibly Pushdown (or Input Driven) languages. OP languages are based on three relations between any two consecutive terminal symbols, which assign syntax structure to words. We extend such relations to k-tuples of consecutive terminal symbols, by using the model of strictly locally testable regular languages of order k at least 3. The new corresponding class of Higher-order Operator Precedence languages (HOP) properly includes the OP languages, and it is still included in the deterministic (also in reverse) context free family. We prove Boolean closure for each subfamily of structurally compatible HOP languages. In each subfamily, the top language is called max-language. We show that such languages are defined by a simple cancellation rule and we prove several properties, in particular that max-languages make an infinite hierarchy ordered by parameter k. HOP languages are a candidate for replacing OP languages in the various applications where they have have been successful though sometimes too restrictive.Comment: In Proceedings AFL 2017, arXiv:1708.0622
    • …
    corecore