54 research outputs found

    Type-2 neutrosophic number based multi-attributive border approximation area comparison (MABAC) approach for offshore wind farm site selection in USA.

    Get PDF
    The technical, logistical, and ecological challenges associated with offshore wind development necessitate an extensive site selection analysis. Technical parameters such as wind resource, logistical concerns such as distance to shore, and ecological considerations such as fisheries all must be evaluated and weighted, in many cases with incomplete or uncertain data. Making such a critical decision with severe potential economic and ecologic consequences requires a strong decision-making approach to ultimately guide the site selection process. This paper proposes a type-2 neutrosophic number (T2NN) fuzzy based multi-criteria decision-making (MCDM) model for offshore wind farm (OWF) site selection. This approach combines the advantages of neutrosophic numbers sets, which can utilize uncertain and incomplete information, with a multi-attributive border approximation area comparison that provides formulation flexibility and easy calculation. Further, this study develops and integrates a techno-economic model for OWFs in the decision-making. A case study is performed to evaluate and rank five proposed OWF sites off the coast of New Jersey. To validate the proposed model, a comparison against three alternative T2NN fuzzy based models is performed. It is demonstrated that the implemented model yields the same ranking order as the alternative approaches. Sensitivity analysis reveals that changing criteria weightings does not affect the ranking order

    Full Issue

    Get PDF

    M-generalised q-neutrosophic extension of CoCoSo method

    Get PDF
    Nowadays fuzzy approaches gain popularity to model multi-criteria decision making (MCDM) problems emerging in real-life applications. Modern modelling trends in this field include evaluation of the criteria information uncertainty and vagueness. Traditional neutrosophic sets are considered as the effective tool to express uncertainty of the information. However, in some cases, it cannot cover all recently proposed cases of the fuzzy sets. The m-generalized q-neutrosophic sets (mGqNNs) can effectively deal with this situation. The novel MCDM methodology CoCoSomGqNN is presented in this paper. An illustrative example presents the analysis of the effectiveness of different retrofit strategy selection decisions for the application in the civil engineering industry

    MULTIMOORA under Interval-Valued Neutrosophic Sets as the Basis for the Quantitative Heuristic Evaluation Methodology HEBIN

    Get PDF
    During the last decade, researchers put a lot of effort into the development of the multi-criteria decision methods (MCDM) capable of dealing with the uncertainty and vagueness of the initial information. MCDM approaches that work under the environment of the interval-valued neutrosophic sets (IVNS) demonstrate credibility for the analysis of different opinions as well as for the inconsistency of the criteria evaluation data. The novel multicriteria decision-making approach MULTIMOORA-IVNS (multi-objective optimisation by ratio analysis under interval-valued neutrosophic sets) is presented in this paper. A novel heuristic evaluation methodology HEBIN (heuristic evaluation based on interval numbers) that exploits MULTIMOORA-IVNS for the processing of the evaluation results is also presented in this research. HEBIN is able to increase the accuracy of the checklists-based heuristic evaluation and to diminish the impact of the inconsistencies caused by the evaluators. A comparison of six e-commerce websites is introduced to reveal the practicalities of the proposed multicriteria decision-making application.This article belongs to the Special Issue Multiple Criteria Decision Makin

    Multi-Criteria Decision Making under Uncertain Evaluations

    Get PDF
    Multi-Criteria Decision Making (MCDM) is a branch of operation research that aims to empower decision makers (DMs) in complex decision problems, where merely depending on DMs judgment is insufficient. Conventional MCDM approaches assume that precise information is available to analyze decision problems. However, decision problems in many applications involve uncertain, imprecise, and subjective data. This manuscripts-based thesis aims to address a number of challenges within the context of MCDM under uncertain evaluations, where the available data is relatively small and information is poor. The first manuscript is intended to handle decision problems, where interdependencies exist among evaluation criteria, while subjective and objective uncertainty are involved. To this end, a new hybrid MCDM methodology is introduced, in which grey systems theory is integrated with a distinctive combination of MCDM approaches. The emergent ability of the new methodology should improve the evaluation space in such a complex decision problem. The overall evaluation of a MCDM problem is based on alternatives evaluations over the different criteria and the associated weights of each criterion. However, information on criteria weights might be unknown. In the second manuscripts, MCDM problems with completely unknown weight information is investigated, where evaluations are uncertain. At first, to estimate the unknown criteria weights a new optimization model is proposed, which combines the maximizing deviation method and the principles of grey systems theory. To evaluate potential alternatives under uncertain evaluations, the Preference Ranking Organization METHod for Enrichment Evaluations approach is extended using degrees of possibility. In many decision areas, information is collected at different periods. Conventional MCDM approaches are not suitable to handle such a dynamic decision problem. Accordingly, the third manuscript aims to address dynamic MCDM (DMCDM) problems with uncertain evaluations over different periods, while information on criteria weights and the influence of different time periods are unknown. A new DMCDM is developed in which three phases are involved: (1) establish priorities among evaluation criteria over different periods; (2) estimate the weight of vectors of different time periods, where the variabilities in the influence of evaluation criteria over the different periods are considered; (3) assess potential alternatives
    corecore