1,411 research outputs found

    Facing online challenges using learning classifier systems

    Get PDF
    Els grans avenços en el camp de l’aprenentatge automàtic han resultat en el disseny de màquines competents que són capaces d’aprendre i d’extreure informació útil i original de l’experiència. Recentment, algunes d’aquestes tècniques d’aprenentatge s’han aplicat amb èxit per resoldre problemes del món real en àmbits tecnològics, mèdics, científics i industrials, els quals no es podien tractar amb tècniques convencionals d’anàlisi ja sigui per la seva complexitat o pel gran volum de dades a processar. Donat aquest èxit inicial, actualment els sistemes d’aprenentatge s’enfronten a problemes de complexitat més elevada, el que ha resultat en un augment de l’activitat investigadora entorn sistemes capaços d’afrontar nous problemes del món real eficientment i de manera escalable. Una de les famílies d’algorismes més prometedores en l’aprenentatge automàtic són els sistemes classificadors basats en algorismes genetics (LCSs), el funcionament dels quals s’inspira en la natura. Els LCSs intenten representar les polítiques d’actuació d’experts humans amb un conjunt de regles que s’empren per escollir les millors accions a realitzar en tot moment. Així doncs, aquests sistemes aprenen polítiques d’actuació de manera incremental a mida que van adquirint experiència a través de la informació nova que se’ls va presentant durant el temps. Els LCSs s’han aplicat, amb èxit, a camps tan diversos com la predicció de càncer de pròstata o el suport a la inversió en borsa, entre altres. A més en alguns casos s’ha demostrat que els LCSs realitzen tasques superant la precisió dels éssers humans. El propòsit d’aquesta tesi és explorar la naturalesa de l’aprenentatge online dels LCSs d’estil Michigan per a la mineria de grans quantitats de dades en forma de fluxos d’informació continus a alta velocitat i canviants en el temps. Molt sovint, l’extracció de coneixement a partir d’aquestes fonts de dades és clau per tal d’obtenir una millor comprensió dels processos que les dades estan descrivint. Així, aprendre d’aquestes dades planteja nous reptes a les tècniques tradicionals d’aprenentatge automàtic, les quals no estan dissenyades per tractar fluxos de dades continus i on els conceptes i els nivells de soroll poden variar amb el temps de forma arbitrària. La contribució de la present tesi pren l’eXtended Classifier System (XCS), el LCS d’estil Michigan més estudiat i un dels algoritmes d’aprenentatge automàtic més competents, com el punt de partida. D’aquesta manera els reptes abordats en aquesta tesi són dos: el primer desafiament és la construcció d’un sistema supervisat competent sobre el framework dels LCSs d’estil Michigan que aprèn dels fluxos de dades amb una capacitat de reacció ràpida als canvis de concepte i entrades amb soroll. Com moltes aplicacions científiques i industrials generen grans quantitats de dades sense etiquetar, el segon repte és aplicar les lliçons apreses per continuar amb el disseny de LCSs d’estil Michigan capaços de solucionar problemes online sense assumir una estructura a priori en els dades d’entrada.Los grandes avances en el campo del aprendizaje automático han resultado en el diseño de máquinas capaces de aprender y de extraer información útil y original de la experiencia. Recientemente alguna de estas técnicas de aprendizaje se han aplicado con éxito para resolver problemas del mundo real en ámbitos tecnológicos, médicos, científicos e industriales, los cuales no se podían tratar con técnicas convencionales de análisis ya sea por su complejidad o por el gran volumen de datos a procesar. Dado este éxito inicial, los sistemas de aprendizaje automático se enfrentan actualmente a problemas de complejidad cada vez m ́as elevada, lo que ha resultado en un aumento de la actividad investigadora en sistemas capaces de afrontar nuevos problemas del mundo real de manera eficiente y escalable. Una de las familias más prometedoras dentro del aprendizaje automático son los sistemas clasificadores basados en algoritmos genéticos (LCSs), el funcionamiento de los cuales se inspira en la naturaleza. Los LCSs intentan representar las políticas de actuación de expertos humanos usando conjuntos de reglas que se emplean para escoger las mejores acciones a realizar en todo momento. Así pues estos sistemas aprenden políticas de actuación de manera incremental mientras van adquiriendo experiencia a través de la nueva información que se les va presentando. Los LCSs se han aplicado con éxito en campos tan diversos como en la predicción de cáncer de próstata o en sistemas de soporte de bolsa, entre otros. Además en algunos casos se ha demostrado que los LCSs realizan tareas superando la precisión de expertos humanos. El propósito de la presente tesis es explorar la naturaleza online del aprendizaje empleado por los LCSs de estilo Michigan para la minería de grandes cantidades de datos en forma de flujos continuos de información a alta velocidad y cambiantes en el tiempo. La extracción del conocimiento a partir de estas fuentes de datos es clave para obtener una mejor comprensión de los procesos que se describen. Así, aprender de estos datos plantea nuevos retos a las técnicas tradicionales, las cuales no están diseñadas para tratar flujos de datos continuos y donde los conceptos y los niveles de ruido pueden variar en el tiempo de forma arbitraria. La contribución del la presente tesis toma el eXtended Classifier System (XCS), el LCS de tipo Michigan más estudiado y uno de los sistemas de aprendizaje automático más competentes, como punto de partida. De esta forma los retos abordados en esta tesis son dos: el primer desafío es la construcción de un sistema supervisado competente sobre el framework de los LCSs de estilo Michigan que aprende de flujos de datos con una capacidad de reacción rápida a los cambios de concepto y al ruido. Como muchas aplicaciones científicas e industriales generan grandes volúmenes de datos sin etiquetar, el segundo reto es aplicar las lecciones aprendidas para continuar con el diseño de nuevos LCSs de tipo Michigan capaces de solucionar problemas online sin asumir una estructura a priori en los datos de entrada.Last advances in machine learning have fostered the design of competent algorithms that are able to learn and extract novel and useful information from data. Recently, some of these techniques have been successfully applied to solve real-­‐world problems in distinct technological, scientific and industrial areas; problems that were not possible to handle by the traditional engineering methodology of analysis either for their inherent complexity or by the huge volumes of data involved. Due to the initial success of these pioneers, current machine learning systems are facing problems with higher difficulties that hamper the learning process of such algorithms, promoting the interest of practitioners for designing systems that are able to scalably and efficiently tackle real-­‐world problems. One of the most appealing machine learning paradigms are Learning Classifier Systems (LCSs), and more specifically Michigan-­‐style LCSs, an open framework that combines an apportionment of credit mechanism with a knowledge discovery technique inspired by biological processes to evolve their internal knowledge. In this regard, LCSs mimic human experts by making use of rule lists to choose the best action to a given problem situation, acquiring their knowledge through the experience. LCSs have been applied with relative success to a wide set of real-­‐ world problems such as cancer prediction or business support systems, among many others. Furthermore, on some of these areas LCSs have demonstrated learning capacities that exceed those of human experts for that particular task. The purpose of this thesis is to explore the online learning nature of Michigan-­‐style LCSs for mining large amounts of data in the form of continuous, high speed and time-­‐changing streams of information. Most often, extracting knowledge from these data is key, in order to gain a better understanding of the processes that the data are describing. Learning from these data poses new challenges to traditional machine learning techniques, which are not typically designed to deal with data in which concepts and noise levels may vary over time. The contribution of this thesis takes the extended classifier system (XCS), the most studied Michigan-­‐style LCS and one of the most competent machine learning algorithms, as the starting point. Thus, the challenges addressed in this thesis are twofold: the first challenge is building a competent supervised system based on the guidance of Michigan-­‐style LCSs that learns from data streams with a fast reaction capacity to changes in concept and noisy inputs. As many scientific and industrial applications generate vast amounts of unlabelled data, the second challenge is to apply the lessons learned in the previous issue to continue with the design of unsupervised Michigan-­‐style LCSs that handle online problems without assuming any a priori structure in input data

    XCS Classifier System with Experience Replay

    Full text link
    XCS constitutes the most deeply investigated classifier system today. It bears strong potentials and comes with inherent capabilities for mastering a variety of different learning tasks. Besides outstanding successes in various classification and regression tasks, XCS also proved very effective in certain multi-step environments from the domain of reinforcement learning. Especially in the latter domain, recent advances have been mainly driven by algorithms which model their policies based on deep neural networks -- among which the Deep-Q-Network (DQN) is a prominent representative. Experience Replay (ER) constitutes one of the crucial factors for the DQN's successes, since it facilitates stabilized training of the neural network-based Q-function approximators. Surprisingly, XCS barely takes advantage of similar mechanisms that leverage stored raw experiences encountered so far. To bridge this gap, this paper investigates the benefits of extending XCS with ER. On the one hand, we demonstrate that for single-step tasks ER bears massive potential for improvements in terms of sample efficiency. On the shady side, however, we reveal that the use of ER might further aggravate well-studied issues not yet solved for XCS when applied to sequential decision problems demanding for long-action-chains

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    Incremental multiple objective genetic algorithms

    Get PDF
    This paper presents a new genetic algorithm approach to multi-objective optimization problemsIncremental Multiple Objective Genetic Algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages: first, an independent population is evolved to optimize one specific objective; second, the better-performing individuals from the evolved single-objective population and the multi-objective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multi-objective population, to which a multi-objective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better

    A brief history of learning classifier systems: from CS-1 to XCS and its variants

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. The direction set by Wilson’s XCS is that modern Learning Classifier Systems can be characterized by their use of rule accuracy as the utility metric for the search algorithm(s) discovering useful rules. Such searching typically takes place within the restricted space of co-active rules for efficiency. This paper gives an overview of the evolution of Learning Classifier Systems up to XCS, and then of some of the subsequent developments of Wilson’s algorithm to different types of learning
    corecore