9,279 research outputs found

    Linear and nonlinear information flow in spatially extended systems

    Full text link
    Infinitesimal and finite amplitude error propagation in spatially extended systems are numerically and theoretically investigated. The information transport in these systems can be characterized in terms of the propagation velocity of perturbations VpV_p. A linear stability analysis is sufficient to capture all the relevant aspects associated to propagation of infinitesimal disturbances. In particular, this analysis gives the propagation velocity VLV_L of infinitesimal errors. If linear mechanisms prevail on the nonlinear ones Vp=VLV_p = V_L. On the contrary, if nonlinear effects are predominant finite amplitude disturbances can eventually propagate faster than infinitesimal ones (i.e. Vp>VLV_p > V_L). The finite size Lyapunov exponent can be successfully employed to discriminate the linear or nonlinear origin of information flow. A generalization of finite size Lyapunov exponent to a comoving reference frame allows to state a marginal stability criterion able to provide VpV_p both in the linear and in the nonlinear case. Strong analogies are found between information spreading and propagation of fronts connecting steady states in reaction-diffusion systems. The analysis of the common characteristics of these two phenomena leads to a better understanding of the role played by linear and nonlinear mechanisms for the flow of information in spatially extended systems.Comment: 14 RevTeX pages with 13 eps figures, title/abstract changed minor changes in the text accepted for publication on PR

    Simple deterministic dynamical systems with fractal diffusion coefficients

    Full text link
    We analyze a simple model of deterministic diffusion. The model consists of a one-dimensional periodic array of scatterers in which point particles move from cell to cell as defined by a piecewise linear map. The microscopic chaotic scattering process of the map can be changed by a control parameter. This induces a parameter dependence for the macroscopic diffusion coefficient. We calculate the diffusion coefficent and the largest eigenmodes of the system by using Markov partitions and by solving the eigenvalue problems of respective topological transition matrices. For different boundary conditions we find that the largest eigenmodes of the map match to the ones of the simple phenomenological diffusion equation. Our main result is that the difffusion coefficient exhibits a fractal structure by varying the system parameter. To understand the origin of this fractal structure, we give qualitative and quantitative arguments. These arguments relate the sequence of oscillations in the strength of the parameter-dependent diffusion coefficient to the microscopic coupling of the single scatterers which changes by varying the control parameter.Comment: 28 pages (revtex), 12 figures (postscript), submitted to Phys. Rev.

    Nonlinearly driven transverse synchronization in coupled chaotic systems

    Full text link
    Synchronization transitions are investigated in coupled chaotic maps. Depending on the relative weight of linear versus nonlinear instability mechanisms associated to the single map two different scenarios for the transition may occur. When only two maps are considered we always find that the critical coupling ϵl\epsilon_l for chaotic synchronization can be predicted within a linear analysis by the vanishing of the transverse Lyapunov exponent λT\lambda_T. However, major differences between transitions driven by linear or nonlinear mechanisms are revealed by the dynamics of the transient toward the synchronized state. As a representative example of extended systems a one dimensional lattice of chaotic maps with power-law coupling is considered. In this high dimensional model finite amplitude instabilities may have a dramatic effect on the transition. For strong nonlinearities an exponential divergence of the synchronization times with the chain length can be observed above ϵl\epsilon_l, notwithstanding the transverse dynamics is stable against infinitesimal perturbations at any instant. Therefore, the transition takes place at a coupling ϵnl\epsilon_{nl} definitely larger than ϵl\epsilon_l and its origin is intrinsically nonlinear. The linearly driven transitions are continuous and can be described in terms of mean field results for non-equilibrium phase transitions with long range interactions. While the transitions dominated by nonlinear mechanisms appear to be discontinuous.Comment: 29 pages, 14 figure

    Low dimensional behavior in three-dimensional coupled map lattices

    Full text link
    The analysis of one-, two-, and three-dimensional coupled map lattices is here developed under a statistical and dynamical perspective. We show that the three-dimensional CML exhibits low dimensional behavior with long range correlation and the power spectrum follows 1/f1/f noise. This approach leads to an integrated understanding of the most important properties of these universal models of spatiotemporal chaos. We perform a complete time series analysis of the model and investigate the dependence of the signal properties by change of dimension.Comment: 7 pages, 6 figures (revised

    Practical implementation of nonlinear time series methods: The TISEAN package

    Full text link
    Nonlinear time series analysis is becoming a more and more reliable tool for the study of complicated dynamics from measurements. The concept of low-dimensional chaos has proven to be fruitful in the understanding of many complex phenomena despite the fact that very few natural systems have actually been found to be low dimensional deterministic in the sense of the theory. In order to evaluate the long term usefulness of the nonlinear time series approach as inspired by chaos theory, it will be important that the corresponding methods become more widely accessible. This paper, while not a proper review on nonlinear time series analysis, tries to make a contribution to this process by describing the actual implementation of the algorithms, and their proper usage. Most of the methods require the choice of certain parameters for each specific time series application. We will try to give guidance in this respect. The scope and selection of topics in this article, as well as the implementational choices that have been made, correspond to the contents of the software package TISEAN which is publicly available from http://www.mpipks-dresden.mpg.de/~tisean . In fact, this paper can be seen as an extended manual for the TISEAN programs. It fills the gap between the technical documentation and the existing literature, providing the necessary entry points for a more thorough study of the theoretical background.Comment: 27 pages, 21 figures, downloadable software at http://www.mpipks-dresden.mpg.de/~tisea

    Nonlinear time-series analysis revisited

    Full text link
    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data---typically univariate---via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems
    • …
    corecore