38 research outputs found

    Developing Globally-Asynchronous Locally- Synchronous Systems through the IOPT-Flow Framework

    Get PDF
    Throughout the years, synchronous circuits have increased in size and com-plexity, consequently, distributing a global clock signal has become a laborious task. Globally-Asynchronous Locally-Synchronous (GALS) systems emerge as a possible solution; however, these new systems require new tools. The DS-Pnet language formalism and the IOPT-Flow framework aim to support and accelerate the development of cyber-physical systems. To do so it offers a tool chain that comprises a graphical editor, a simulator and code gener-ation tools capable of generating C, JavaScript and VHDL code. However, DS-Pnets and IOPT-Flow are not yet tuned to handle GALS systems, allowing for partial specification, but not a complete one. This dissertation proposes extensions to the DS-Pnet language and the IOPT-Flow framework in order to allow development of GALS systems. Addi-tionally, some asynchronous components were created, these form interfaces that allow synchronous blocks within a GALS system to communicate with each other

    A 3-step Low-latency Low-Power Multichannel Time-to-Digital Converter based on Time Residual Amplifier

    Full text link
    This paper proposes and evaluates a novel architecture for a low-power Time-to-Digital Converter with high resolution, optimized for both integration in multichannel chips and high rate operation (40 Mconversion/s/channel). This converter is based on a three-step architecture. The first step uses a counter whereas the following ones are based on two kinds of Delay Line structures. A programmable time amplifier is used between the second and third steps to reach the final resolution of 24.4 ps in the standard mode of operation. The system makes use of common continuously stabilized master blocks that control trimmable slave blocks, in each channel, against the effects of global PVT variations. Thanks to this structure, the power consumption of a channel is considerably reduced when it does not process a hit, and limited to 2.2 mW when it processes a hit. In the 130 nm CMOS technology used for the prototype, the area of a TDC channel is only 0.051 mm2. This compactness combined with low power consumption is a key advantage for integration in multi-channel front-end chips. The performance of this new structure has been evaluated on prototype chips. Measurements show excellent timing performance over a wide range of operating temperatures (-40{\deg}C to 60{\deg}C) in agreement with our expectations. For example, the measured timing integral nonlinearity is better than 1 LSB (25 ps) and the overall timing precision is better than 21 ps RMS

    Design and Validation of Network-on-Chip Architectures for the Next Generation of Multi-synchronous, Reliable, and Reconfigurable Embedded Systems

    Get PDF
    NETWORK-ON-CHIP (NoC) design is today at a crossroad. On one hand, the design principles to efficiently implement interconnection networks in the resource-constrained on-chip setting have stabilized. On the other hand, the requirements on embedded system design are far from stabilizing. Embedded systems are composed by assembling together heterogeneous components featuring differentiated operating speeds and ad-hoc counter measures must be adopted to bridge frequency domains. Moreover, an unmistakable trend toward enhanced reconfigurability is clearly underway due to the increasing complexity of applications. At the same time, the technology effect is manyfold since it provides unprecedented levels of system integration but it also brings new severe constraints to the forefront: power budget restrictions, overheating concerns, circuit delay and power variability, permanent fault, increased probability of transient faults. Supporting different degrees of reconfigurability and flexibility in the parallel hardware platform cannot be however achieved with the incremental evolution of current design techniques, but requires a disruptive approach and a major increase in complexity. In addition, new reliability challenges cannot be solved by using traditional fault tolerance techniques alone but the reliability approach must be also part of the overall reconfiguration methodology. In this thesis we take on the challenge of engineering a NoC architectures for the next generation systems and we provide design methods able to overcome the conventional way of implementing multi-synchronous, reliable and reconfigurable NoC. Our analysis is not only limited to research novel approaches to the specific challenges of the NoC architecture but we also co-design the solutions in a single integrated framework. Interdependencies between different NoC features are detected ahead of time and we finally avoid the engineering of highly optimized solutions to specific problems that however coexist inefficiently together in the final NoC architecture. To conclude, a silicon implementation by means of a testchip tape-out and a prototype on a FPGA board validate the feasibility and effectivenes

    Time-Based Analog to Digital Converters.

    Full text link
    Low-power, small analog-to-digital converters (ADCs) have numerous applications in areas ranging from power-aware wireless sensing nodes for environmental monitoring to biomedical monitoring devices in point-of-care (PoC) instruments. The work focuses on ultra-low-power, and highly integrated implementations of ADCs, in nanometer-scale complementary metal-oxide-semiconductor (CMOS) very large scale (VLSI) integrated circuit fabrication technologies. In particular, we explore time-based techniques for data conversion, which can potentially achieve significant reductions in power consumption while keeping silicon chip area small, compared to today’s state-of-the-art ADC architectures. Today, digital integrated circuits and digital signal processors (DSP) are taking advantage of technology scaling to achieve improvements power, speed, and cost. Meanwhile, as technology scaling reduces supply voltage and intrinsic transistor gain, analog circuit designers face disadvantages. With these disadvantages of technology scaling, two new broad trends have emerged in ADC research. The first trend is the emergence of digitally-assisted analog design, which emphasizes the relaxation of analog domain precision and the recovering accuracy (and performance) in the digital domain. This approach is a good match to the capabilities of fine line technology and helps to reduce power consumption. The second trend is the representation of signals, and the processing of signals, in the time domain. Technology scaling and its focus on high-performance digital systems offers better time resolution by reducing the gate delay. Therefore, if we represent a signal as a period of time, rather than as a voltage, we can take advantage of technology scaling, and potentially reduce power consumption and die area. This thesis focuses on pulse position modulation (PPM) ADCs, which incorporate time-domain processing and digitally assisted analog circuitry. This architecture reduces power consumption and area significantly, without sacrificing performance. The input signal is pulse position modulated and the analog information is carried in the form of timing intervals. Timing measurement accuracy presents a major challenge and we present various methods in which accuracy can be achieved using CMOS processes. This ‘digital’ approach is more power efficient compared with pure analog solutions, utilized for amplitude measurement of input signals.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64787/1/naraghi_1.pd

    Metastability-containing circuits, parallel distance problems, and terrain guarding

    Get PDF
    We study three problems. The first is the phenomenon of metastability in digital circuits. This is a state of bistable storage elements, such as registers, that is neither logical 0 nor 1 and breaks the abstraction of Boolean logic. We propose a time- and value-discrete model for metastability in digital circuits and show that it reflects relevant physical properties. Further, we propose the fundamentally new approach of using logical masking to perform meaningful computations despite the presence of metastable upsets and analyze what functions can be computed in our model. Additionally, we show that circuits with masking registers grow computationally more powerful with each available clock cycle. The second topic are parallel algorithms, based on an algebraic abstraction of the Moore-Bellman-Ford algorithm, for solving various distance problems. Our focus are distance approximations that obey the triangle inequality while at the same time achieving polylogarithmic depth and low work. Finally, we study the continuous Terrain Guarding Problem. We show that it has a rational discretization with a quadratic number of guard candidates, establish its membership in NP and the existence of a PTAS, and present an efficient implementation of a solver.Wir betrachten drei Probleme, zunächst das Phänomen von Metastabilität in digitalen Schaltungen. Dabei geht es um einen Zustand in bistabilen Speicherelementen, z.B. Registern, welcher weder logisch 0 noch 1 entspricht und die Abstraktion Boolescher Logik unterwandert. Wir präsentieren ein zeit- und wertdiskretes Modell für Metastabilität in digitalen Schaltungen und zeigen, dass es relevante physikalische Eigenschaften abbildet. Des Weiteren präsentieren wir den grundlegend neuen Ansatz, trotz auftretender Metastabilität mit Hilfe von logischem Maskieren sinnvolle Berechnungen durchzuführen und bestimmen, welche Funktionen in unserem Modell berechenbar sind. Darüber hinaus zeigen wir, dass durch Maskingregister in zusätzlichen Taktzyklen mehr Funktionen berechenbar werden. Das zweite Thema sind parallele Algorithmen die, basierend auf einer Algebraisierung des Moore-Bellman-Ford-Algorithmus, diverse Distanzprobleme lösen. Der Fokus liegt auf Distanzapproximationen unter Einhaltung der Dreiecksungleichung bei polylogarithmischer Tiefe und niedriger Arbeit. Abschließend betrachten wir das kontinuierliche Terrain Guarding Problem. Wir zeigen, dass es eine rationale Diskretisierung mit einer quadratischen Anzahl von Wächterpositionen erlaubt, folgern dass es in NP liegt und ein PTAS existiert und präsentieren eine effiziente Implementierung, die es löst

    Master of Science

    Get PDF
    thesisThis thesis designs, implements, and evaluates modular Open Core Protocol (OCP) interfaces for Intellectual Property (IP) cores and Network-on-Chip (NoC) that re- duces System-On-Chip (SoC) design time and enables research on di erent architectural sequencing control methods. To utilize the NoCs design time optimization feature at the boundaries, a standardized industry socket was required, which can address the SoC shorter time-to-market requirements, design issues, and also the subsequent reuse of developed IP cores. OCP is an open industry standard socket interface speci cation used in this research to enable the IP cores reusability across multiple SoC designs. This research work designs and implements clocked OCP interfaces between IP cores and On-Chip Network Fabric (NoC), in single- and multi- frequency clocked domains. The NoC interfaces between IP cores and on-chip network fabric are implemented using the standard network interface structure. It consists of back-end and front-end submodules corresponding to customized interfaces to IP cores or network fabric and OCP Master and Slave entities, respectively. A generic domain interface (DI) protocol is designed which acts as the bridge between back-end and front-end submodules for synchronization and data ow control. Clocked OCP interfaces are synthesized, placed and routed using IBM's 65nm process technology. The implemented designs are veri ed for OCP compliance using SOLV (Sonics OCP Library for Veri cation). Finally, this thesis reports the performance metrics such as design target frequency of operation, latency, area, energy per transaction, and maximum bandwidth across network on-chip for single- and multifrequency clocked designs
    corecore