1,616 research outputs found

    A Performance Comparison of Virtual Backbone Formation Algorithms for Wireless Mesh Networks

    Get PDF
    Currently wireless networks are dominant by star topology paradigm. Its natural the evolution is towards wireless mesh multi-hop networks. This article compares the performance of several algorithms for virtual backbone formation in ad hoc mesh networks both theoretically and through simulations. Firstly, an overview of the algorithms is given. Next, the results of the algorithm simulations made with the program Dominating Set Simulation Suite (DSSS) are described and interpreted. We have been extended the simulator to simulate the Mobile Backbone Network Topology Synthesis Algorithm. The results show that this algorithm has the best combination of performance characteristics among the compared algorithms

    Smaller Connected Dominating Sets in Ad Hoc and Sensor Networks based on Coverage by Two-Hop Neighbors

    Get PDF
    In this paper, we focus on the construction of an efficient dominating set in ad hoc and sensor networks. A set of nodes is said to be dominating if each node is either itself dominant or neighbor of a dominant node. This set can for example be used for broadcasting, so the smaller the set is, the more efficient it is. As a basis for our work, we use a heuristics given by Dai and Wu for constructing such a set and propose an enhanced definition to obtain smaller sets. This approach, in conjunction with the elimination of message overhead by Stojmenovic, has been shown (in recent studies) to be an excellent compromise with respect to a wide range of metrics considered. In our new definition, a node u is not dominant if there exists in its 2-hop neighborhood a connected set of nodes with higher priorities that covers u and its 1-hop neighbors. This new rule uses the exact same level of information required by the original heuristics, only neighbors of nodes and neighbors of neighbors must be known to apply it, but it takes advantage of some knowledge originally not taken into account: 1-hop neighbors can be covered by some 2-hop neighbors. We give the proof that the set obtained with this new definition is a subset of the one obtained with Dai and Wu's heuristics. We also give the proof that our set is always dominating for any graph, and connected for any connected graph. Two versions were considered: with topological and positional information, which differ in whether or not nodes are aware of links between their 2-hop neighbors that are not 1-hop neighbors. An algorithm for applying the concept at each node is described. We finally provide experimental data that demonstrates the superiority of our rule in obtaining smaller dominating sets. A centralized algorithm was used as a benchmark in the comparison. The overhead of the size of connected dominating set was reduced by about 15% with the topological variant and by about 30% with the positional variant of our new definition

    Connectivity, Coverage and Placement in Wireless Sensor Networks

    Get PDF
    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes

    Topology Control, Routing Protocols and Performance Evaluation for Mobile Wireless Ad Hoc Networks

    Get PDF
    A mobile ad-hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the support of any established infrastructure or centralized administration. There are many potential applications based the techniques of MANETs, such as disaster rescue, personal area networking, wireless conference, military applications, etc. MANETs face a number of challenges for designing a scalable routing protocol due to their natural characteristics. Guaranteeing delivery and the capability to handle dynamic connectivity are the most important issues for routing protocols in MANETs. In this dissertation, we will propose four algorithms that address different aspects of routing problems in MANETs. Firstly, in position based routing protocols to design a scalable location management scheme is inherently difficult. Enhanced Scalable Location management Service (EnSLS) is proposed to improve the scalability of existing location management services, and a mathematical model is proposed to compare the performance of the classical location service, GLS, and our protocol, EnSLS. The analytical model shows that EnSLS has better scalability compared with that of GLS. Secondly, virtual backbone routing can reduce communication overhead and speedup the routing process compared with many existing on-demand routing protocols for routing detection. In many studies, Minimum Connected Dominating Set (MCDS) is used to approximate virtual backbones in a unit-disk graph. However finding a MCDS is an NP-hard problem. In the dissertation, we develop two new pure localized protocols for calculating the CDS. One emphasizes forming a small size initial near-optimal CDS via marking process, and the other uses an iterative synchronized method to avoid illegal simultaneously removal of dominating nodes. Our new protocols largely reduce the number of nodes in CDS compared with existing methods. We show the efficiency of our approach through both theoretical analysis and simulation experiments. Finally, using multiple redundant paths for routing is a promising solution. However, selecting an optimal path set is an NP hard problem. We propose the Genetic Fuzzy Multi-path Routing Protocol (GFMRP), which is a multi-path routing protocol based on fuzzy set theory and evolutionary computing

    An Enhanced Algorithm to Find Dominating Set Nodes in Ad Hoc Wireless Networks

    Get PDF
    A wireless ad hoc network is a collection of wireless mobile nodes forming a temporary network without the aid of any established infrastructure or centralized administration. A connection is achieved between two nodes through a single hop transmission if they are directly connected or multi-hop transmission if they are not. The wireless networks face challenges to form an optimal routing protocol. Some approaches are based on a dominating set, which has all the nodes either in the set or within its neighborhood. The proposed algorithm is an enhancement of the distributed algorithm proposed by Wu and Li. The simulation results from the new algorithm are compared to results from Wu and Li’s algorithm. The simulation results show that the average dominating set of nodes decreased considerable after applying the new algorithm. The decrease in number of dominate set nodes is not very much noticeable in low density space

    Coverage Issues in Wireless Ad-Hoc Sensor Networks

    Get PDF
    Wireless Ad-Hoc sensor networks have a broad range of applications in the military,vigilance, environment monitoring, and healthcare fields. Coverage of the sensor networks describes how well an area is monitored. The coverage problem has been studied extensively, especially when combined with connectivity and well-organized. Coverage is a typical problem in the wireless sensor networks to fulfil issued sensing tasks. In general, sensing analysis represents how well an area is monitored by sensors. The quality of the sensor network can be reflected by levels of coverage and connectivity that it offers. The coverage issues have been studied extensively, especially when combined with connectivity and energy efficiency. Constructing a connected fully covered, and energy efficient sensor network is valuable for real world applications due to limited resources of sensor nodes. The survey recent contributions addressing energy efficient coverage problems in the context of static WASNs, networks in which sensor nodes do not move once they are deployed and present in some detail of the algorithms, assumptions, and results. A comprehensive comparison among these approaches is given from perspective of design objectives, assumptions, algorithm attributes and related results
    corecore