594 research outputs found

    Signal Identification In Discrete-Time Based On Internal-Model-Principle

    Get PDF
    This work presents an implementation of a signal identification algorithm which is based on the internal model principle. By using several internal models in feedback with a tuning function, this algorithm can decompose a signal into narrow-band signals and identify the frequencies, amplitudes and relative phases. A desired band-pass filter response can be achieved by selecting appropriate coefficients of the controllers and tuning functions, which can reject the noise and improve the performance. To achieve a result with fast transient characteristics, this system is then modified by adding a low-pass filter. This work is based on the previous work in continuous time. However, a discrete implementation should be much more practical. The simulation result shows a good tracking of the original signal with minimal response to measurement noise

    Improved EMD-Based Complex Prediction Model for Wind Power Forecasting

    Get PDF
    As a response to rapidly increasing penetration of wind power generation in modern electric power grids, accurate prediction models are crucial to deal with the associated uncertainties. Due to the highly volatile and chaotic nature of wind power, employing complex intelligent prediction tools is necessary. Accordingly, this article proposes a novel improved version of empirical mode decomposition (IEMD) to decompose wind measurements. The decomposed signal is provided as input to a hybrid forecasting model built on a bagging neural network (BaNN) combined with K-means clustering. Moreover, a new intelligent optimization method named ChB-SSO is applied to automatically tune the BaNN parameters. The performance of the proposed forecasting framework is tested using different seasonal subsets of real-world wind farm case studies (Alberta and Sotavento) through a comprehensive comparative analysis against other well-known prediction strategies. Furthermore, to analyze the effectiveness of the proposed framework, different forecast horizons have been considered in different test cases. Several error assessment criteria were used and the obtained results demonstrate the superiority of the proposed method for wind forecasting compared to other methods for all test cases.© 2020 Institute of Electrical and Electronics Engineersfi=vertaisarvioitu|en=peerReviewed

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    Development of new fault detection methods for rotating machines (roller bearings)

    Get PDF
    Abstract Early fault diagnosis of roller bearings is extremely important for rotating machines, especially for high speed, automatic and precise machines. Many research efforts have been focused on fault diagnosis and detection of roller bearings, since they constitute one the most important elements of rotating machinery. In this study a combination method is proposed for early damage detection of roller bearing. Wavelet packet transform (WPT) is applied to the collected data for denoising and the resulting clean data are break-down into some elementary components called Intrinsic mode functions (IMFs) using Ensemble empirical mode decomposition (EEMD) method. The normalized energy of three first IMFs are used as input for Support vector machine (SVM) to recognize whether signals are sorting out from healthy or faulty bearings. Then, since there is no robust guide to determine amplitude of added noise in EEMD technique, a new Performance improved EEMD (PIEEMD) is proposed to determine the appropriate value of added noise. A novel feature extraction method is also proposed for detecting small size defect using Teager-Kaiser energy operator (TKEO). TKEO is applied to IMFs obtained to create new feature vectors as input data for one-class SVM. The results of applying the method to acceleration signals collected from an experimental bearing test rig demonstrated that the method can be successfully used for early damage detection of roller bearings. Most of the diagnostic methods that have been developed up to now can be applied for the case stationary working conditions only (constant speed and load). However, bearings often work at time-varying conditions such as wind turbine supporting bearings, mining excavator bearings, vehicles, robots and all processes with run-up and run-down transients. Damage identification for bearings working under non-stationary operating conditions, especially for early/small defects, requires the use of appropriate techniques, which are generally different from those used for the case of stationary conditions, in order to extract fault-sensitive features which are at the same time insensitive to operational condition variations. Some methods have been proposed for damage detection of bearings working under time-varying speed conditions. However, their application might increase the instrumentation cost because of providing a phase reference signal. Furthermore, some methods such as order tracking methods still can be applied when the speed variation is limited. In this study, a novel combined method based on cointegration is proposed for the development of fault features which are sensitive to the presence of defects while in the same time they are insensitive to changes in the operational conditions. It does not require any additional measurements and can identify defects even for considerable speed variations. The signals acquired during run-up condition are decomposed into IMFs using the performance improved EEMD method. Then, the cointegration method is applied to the intrinsic mode functions to extract stationary residuals. The feature vectors are created by applying the Teager-Kaiser energy operator to the obtained stationary residuals. Finally, the feature vectors of the healthy bearing signals are utilized to construct a separating hyperplane using one-class support vector machine. Eventually the proposed method was applied to vibration signals measured on an experimental bearing test rig. The results verified that the method can successfully distinguish between healthy and faulty bearings even if the shaft speed changes dramatically

    Nonparametric Identification of nonlinear dynamic Systems

    Get PDF
    In der vorliegenden Arbeit wird eine nichtparametrische Identifikationsmethode für stark nichtlineare Systeme entwickelt, welche in der Lage ist, die Nichtlinearitäten basierend auf Schwingungsmessungen in Form von allgemeinen dreidimensionalen Rückstellkraft-Flächen zu rekonstruieren ohne Vorkenntnisse über deren funktionale Form. Die Vorgehensweise basiert auf nichtlinearen Kalman Filter Algorithmen, welche durch Ergänzung des Zustandsvektors in Parameterschätzer verwandelt werden können. In dieser Arbeit wird eine Methode beschrieben, die diese bekannte parametrische Lösung zu einem nichtparametrischen Verfahren weiterentwickelt. Dafür wird ein allgemeines Nichtlinearitätsmodell eingeführt, welches die Rückstellkräfte durch zeitvariable Koeffizienten der Zustandsvariablen beschreibt, die als zusätzliche Zustandsgrößen geschätzt werden. Aufgrund der probabilistischen Formulierung der Methode, können trotz signifikantem Messrauschen störfreie Rückstellkraft-Charakteristiken identifiziert werden. Durch den Kalman Filter Algorithmus ist die Beobachtbarkeit der Nichtlinearitäten bereits durch eine Messgröße pro Systemfreiheitsgrad gegeben. Außerdem ermöglicht diese Beschreibung die Durchführung einer vollständigen Identifikation, wobei die restlichen konstanten Parameter des Systems zusätzlich geschätzt werden. Die Leistungsfähigkeit des entwickelten Verfahrens wird anhand von virtuellen und realen Identifikationsbeispielen nichtlinearer mechanischen Systeme mit ein und drei Freiheitsgraden demonstriert

    Energy Analytics for Infrastructure: An Application to Institutional Buildings

    Get PDF
    abstract: Commercial buildings in the United States account for 19% of the total energy consumption annually. Commercial Building Energy Consumption Survey (CBECS), which serves as the benchmark for all the commercial buildings provides critical input for EnergyStar models. Smart energy management technologies, sensors, innovative demand response programs, and updated versions of certification programs elevate the opportunity to mitigate energy-related problems (blackouts and overproduction) and guides energy managers to optimize the consumption characteristics. With increasing advancements in technologies relying on the ‘Big Data,' codes and certification programs such as the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and the Leadership in Energy and Environmental Design (LEED) evaluates during the pre-construction phase. It is mostly carried out with the assumed quantitative and qualitative values calculated from energy models such as Energy Plus and E-quest. However, the energy consumption analysis through Knowledge Discovery in Databases (KDD) is not commonly used by energy managers to perform complete implementation, causing the need for better energy analytic framework. The dissertation utilizes Interval Data (ID) and establishes three different frameworks to identify electricity losses, predict electricity consumption and detect anomalies using data mining, deep learning, and mathematical models. The process of energy analytics integrates with the computational science and contributes to several objectives which are to 1. Develop a framework to identify both technical and non-technical losses using clustering and semi-supervised learning techniques. 2. Develop an integrated framework to predict electricity consumption using wavelet based data transformation model and deep learning algorithms. 3. Develop a framework to detect anomalies using ensemble empirical mode decomposition and isolation forest algorithms. With a thorough research background, the first phase details on performing data analytics on the demand-supply database to determine the potential energy loss reduction potentials. Data preprocessing and electricity prediction framework in the second phase integrates mathematical models and deep learning algorithms to accurately predict consumption. The third phase employs data decomposition model and data mining techniques to detect the anomalies of institutional buildings.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    Adaptive protection and control for wide-area blackout prevention

    Get PDF
    Technical analyses of several recent power blackouts revealed that a group of generators going out-of-step with the rest of the power system is often a precursor of a complete system collapse. Out-of-step protection is designed to assess the stability of the evolving swing after a disturbance and take control action accordingly. However, the settings of out-of-step relays are found to be unsatisfactory due to the fact that the electromechanical swings that occurred during relay commissioning are different in practice. These concerns motivated the development of a novel approach to recalculate the out-of-step protection settings to suit the prevalent operating condition. With phasor measurement unit (PMU) technology, it is possible to adjust the setting of out-of-step relay in real-time. The setting of out-of-step relay is primarily determined by three dynamic parameters: direct axis transient reactance, quadrature axis speed voltage and generator inertia. In a complex power network, these parameters are the dynamic parameters of an equivalent model of a coherent group of generators. Hence, it is essential to identify the coherent group of generators and estimate the dynamic model parameters of each generator in the system first in order to form the dynamic model equivalent in the system. The work presented in this thesis develops a measurement-based technique to identify the coherent areas of power system network by analysing the measured data obtained from the system. The method is based on multivariate analysis of the signals, using independent component analysis (ICA). Also, a technique for estimating the dynamic model parameters of the generators in the system has been developed. The dynamic model parameters of synchronous generators are estimated by processing the PMU measurements using unscented Kalman filter (UKF).Open Acces

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Sensor fusion for tangible acoustic interfaces for human computer intreraction

    Get PDF
    This thesis presents the development of tangible acoustic interfaces for human computer interaction. The method adopted was to position sensors on the surface of a solid object to detect acoustic waves generated during an interaction, process the sensor signals and estimate either the location of a discrete impact or the trajectory of a moving point of contact on the surface. Higher accuracy and reliability were achieved by employing sensor fusion to combine the information collected from redundant sensors electively positioned on the solid object. Two different localisation approaches are proposed in the thesis. The learning-based approach is employed to detect discrete impact positions. With this approach, a signature vector representation of time-series patterns from a single sensor is matched with database signatures for known impact locations. For improved reliability, a criterion is proposed to extract the location signature from two vectors. The other approach is based on the Time Difference of Arrival (TDOA) of a source signal captured by a spatially distributed array of sensors. Enhanced positioning algorithms that consider near-field scenario, dispersion, optimisation and filtration are proposed to tackle the problems of passive acoustic localisation in solid objects. A computationally efficient algorithm for tracking a continuously moving source is presented. Spatial filtering of the estimated trajectory has been performed using Kalman filtering with automated initialisation
    corecore