35 research outputs found

    MAC Protocols for Wireless Mesh Networks with Multi-beam Antennas: A Survey

    Full text link
    Multi-beam antenna technologies have provided lots of promising solutions to many current challenges faced in wireless mesh networks. The antenna can establish several beamformings simultaneously and initiate concurrent transmissions or receptions using multiple beams, thereby increasing the overall throughput of the network transmission. Multi-beam antenna has the ability to increase the spatial reuse, extend the transmission range, improve the transmission reliability, as well as save the power consumption. Traditional Medium Access Control (MAC) protocols for wireless network largely relied on the IEEE 802.11 Distributed Coordination Function(DCF) mechanism, however, IEEE 802.11 DCF cannot take the advantages of these unique capabilities provided by multi-beam antennas. This paper surveys the MAC protocols for wireless mesh networks with multi-beam antennas. The paper first discusses some basic information in designing multi-beam antenna system and MAC protocols, and then presents the main challenges for the MAC protocols in wireless mesh networks compared with the traditional MAC protocols. A qualitative comparison of the existing MAC protocols is provided to highlight their novel features, which provides a reference for designing the new MAC protocols. To provide some insights on future research, several open issues of MAC protocols are discussed for wireless mesh networks using multi-beam antennas.Comment: 22 pages, 6 figures, Future of Information and Communication Conference (FICC) 2019, https://doi.org/10.1007/978-3-030-12388-8_

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels

    Get PDF
    We study the problem of how to alleviate the exposed terminal effect in multi-hop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that sched-ules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multi-hop wireless networks

    Routing in heterogeneous wireless ad hoc networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008.Includes bibliographical references (p. 135-146).Wireless ad hoc networks are used in several applications ranging from infrastructure monitoring to providing Internet connectivity to remote locations. A common assumption about these networks is that the devices that form the network are homogeneous in their capabilities. However in reality, the networks can be heterogeneous in the capabilities of the devices. The main contribution of this thesis is the identification of issues for efficient communication in heterogeneous networks and the proposed solutions to these issues. The first part of the thesis deals with the issues of unambiguous classification of devices and device identification in ad hoc networks. A taxonomical approach is developed, which allows devices with wide range of capabilities to be classified on the basis of their functionality. Once classified, devices are characterized on the basis of different attributes. An IPv6 identification scheme and two routing services based on this scheme that allow object-object communication are developed. The identification scheme is extended to a multi-addressing scheme for wireless ad hoc networks. These two issues and the developed solutions are applicable to a broad range of heterogeneous networks. The second part of the thesis deals with heterogeneous networks consisting of omnidirectional and directional antennas. A new MAC protocol for directional antennas, request-to-pause-directional-MAC (RTP-DMAC) protocol is developed that solves the deafness issue, which is common in networks with directional antennas. Three new routing metrics, which are extensions to the expected number of transmissions (ETX) metric are developed. The first metric, ETX1, reduces the route length by increasing the transmission power. The routing and MAC layers assume the presence of bidirectional links for their proper operation. However networks with omnidirectional and directional antennas have unidirectional links. The other two metrics, unidirectional-ETX (U-ETX) and unidirectional-ETX1 (U-ETX1), increase the transmission power of the directional nodes so that the unidirectional links appear as bidirectional links at the MAC and the routing layers. The performance of these metrics in different scenarios is evaluated.by Sivaram M.S.L. Cheekiralla.Ph.D

    Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Technology and Applications Symposium

    Get PDF
    The Work-In-Progress session of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS\u2707) presents papers describing contributions both to state of the art and state of the practice in the broad field of real-time and embedded systems. The 17 accepted papers were selected from 19 submissions. This proceedings is also available as Washington University in St. Louis Technical Report WUCSE-2007-17, at http://www.cse.seas.wustl.edu/Research/FileDownload.asp?733. Special thanks go to the General Chairs – Steve Goddard and Steve Liu and Program Chairs - Scott Brandt and Frank Mueller for their support and guidance

    Supporting Device Mobility and State Distribution through Indirection, Topological Isomorphism and Evolutionary Algorithms

    Get PDF
    The Internet of Things will result in the deployment of many billions of wireless embedded systems, creating interactive pervasive environments. These pervasive networks will provide seamless access to sensor actuators, enabling organisations and individuals to control and monitor their environment. The majority of devices attached to the Internet of Things will be static. However, it is anticipated that with the advent of body and vehicular networks, we will see many mobile Internet of Things Devices. During emergency situations, the flow of data across the Internet of Things may be disrupted, giving rise to a requirement for machine-to-machine interaction within the remaining environment. Current approaches to routing on the Internet and wireless sensor networks fail to address the requirements of mobility, isolated operation during failure or deal with the imbalance caused by either initial or failing topologies when applying geographic coordinate-based peer-to-peer storage mechanisms. The use of global and local DHT mechanisms to facilitate improved reachability and data redundancy are explored in this thesis. Resulting in the development of an Architecture to support the global reachability of static and mobile Internet of Things Devices. This is achieved through the development of a global indirection mechanism supporting position relative wireless environments. To support the distribution and preservation of device state within the wireless domain a new geospatial keying mechanism is presented, this enables a device to persist state within an overlay with certain guarantees as to its survival. The guarantees relating to geospatial storage rely on the balanced allocation of distributed information. This thesis details a mechanism to balance the address space utilising evolutionary techniques. Following the generation of an initial balanced topology, we present a protocol that applies Topological Isomorphism to provide the continued balancing and reachability of data following partial network failure. This dissertation details the analysis of the proposed protocols and their evaluation through simulation. The results show that our proposed Architecture operates within the capabilities of the devices that operate in this space. The evaluation of Geospatial Keying within the wireless domain showed that the mechanism presented provides better device state preservation than would be found in the random placement exhibited by the storage of state in overlay DHT schemes. Experiments confirm device storage imbalance when using geographic routing; however, the results provided in this thesis show that the use of genetic algorithms can provide an improved identity assignment through the application of alternating fitness between reachability and ideal key displacement. This topology, as is commonly found in geographical routing, was susceptible to imbalance following device failure. The use of topological isomorphism provided an improvement over existing geographical routing protocols to counteract the reachability and imbalance caused by failure

    A simulation framework for traffic information dissemination in ubiquitous vehicular ad hoc networks

    Get PDF
    The ongoing efforts to apply advanced technologies to help solve transportation problems advanced the growing trend of integrating mobile wireless communications into transportation systems. In particular, vehicular ad hoc networks (VANETs) allow vehicles to constitute a decentralized traffic information system on roadways and to share their own information. This research focused on the development of an integrated transportation and communication simulation framework to build a more realistic environment with which to study VANETs, as compared to previous studies. This research implemented a VANET-based information model into an integrated transportation and communication simulation framework in which these independent simulation tools were tightly coupled and finely synchronized. A traffic information system as a VANET application was built and demonstrated based on the simulation framework developed in this research. In this system, vehicles record their own travel time data, share these data via an ad hoc network, and reroute at split sections based on stored travel time data. Disseminated speeds of traffic information via broadcast on a real roadway network were obtained. In this research, Traffic information speeds were approximately between the road speed limit in a low traffic density - in which case they were mostly delivered by vehicles traveling on the opposite directions - and half of the transmission range (250/2 meter) per second in a high traffic density, which means they were delivered by vehicles traveling in the same direction. Successful dynamic routing based on stored travel time data was demonstrated with and without an incident in this framework. At the both cases, the benefits from dynamic routing were shown even in the low market penetration. It is believed that a wide range of VANET applications can be designed and assessed using methodologies influenced by and contributed to by the simulation framework and other methods developed in this dissertation

    Congestion control in wireless sensor networks

    Get PDF
    Information-sensing and data-forwarding in Wireless Sensor Networks (WSN) often incurs high traffic demands, especially during event detection and concurrent transmissions. Managing such large amounts of data remains a considerable challenge in resource-limited systems like WSN, which typically observe a many-to-one transmission model. The result is often a state of constant buffer-overload or congestion, preventing desirable performance to the extent of collapsing an entire network. The work herein seeks to circumvent congestion issues and its negative effects in WSN and derivative platforms such as Body Sensor Networks (BSN). The recent proliferation of WSN has emphasized the need for high Quality-of-Service (QoS) in applications involving real-time and remote monitoring systems such as home automation, military surveillance, environmental hazard detection, as well as BSN-based healthcare and assisted-living systems. Nevertheless, nodes in WSN are often resource-starved as data converges and cause congestion at critical points in such networks. Although this has been a primal concern within the WSN field, elementary issues such as fairness and reliability that directly relate to congestion are still under-served. Moreover, hindering loss of important packets, and the need to avoid packet entrapment in certain network areas remain salient avenues of research. Such issues provide the motivation for this thesis, which lead to four research concerns: (i) reduction of high-traffic volumes; (ii) optimization of selective packet discarding; (iii) avoidance of infected areas; and (iv) collision avoidance with packet-size optimization. Addressing these areas would provide for high QoS levels, and pave the way for seamless transmissions in WSN. Accordingly, the first chapter attempts to reduce the amount of network traffic during simultaneous data transmissions, using a rate-limiting technique known as Relaxation Theory (RT). The goal is for substantial reductions in otherwise large data-streams that cause buffer overflows. Experimentation and analysis with Network Simulator 2 (NS-2), show substantial improvement in performance, leading to our belief that RT-MMF can cope with high incoming traffic scenarios and thus, avoid congestion issues. Whilst limiting congestion is a primary objective, this thesis keenly addresses subsequent issues, especially in worst-case scenarios where congestion is inevitable. The second research question aims at minimizing the loss of important packets crucial to data interpretation at end-systems. This is achieved using the integration of selective packet discarding and Multi-Objective Optimization (MOO) function, contributing to the effective resource-usage and optimized system. A scheme was also developed to detour packet transmissions when nodes become infected. Extensive evaluations demonstrate that incoming packets are successfully delivered to their destinations despite the presence of infected nodes. The final research question addresses packet collisions in a shared wireless medium using distributed collision control that takes packet sizes into consideration. Performance evaluation and analysis reveals desirable performance that are resulted from a strong consideration of packet sizes, and the effect of different Bit Error Rates (BERs)

    Message traceback systems dancing with the devil

    Get PDF
    The research community has produced a great deal of work in recent years in the areas of IP, layer 2 and connection-chain traceback. We collectively designate these as message traceback systems which, invariably aim to locate the origin of network data, in spite of any alterations effected to that data (whether legitimately or fraudulently). This thesis provides a unifying definition of spoofing and a classification based on this which aims to encompass all streams of message traceback research. The feasibility of this classification is established through its application to our literature review of the numerous known message traceback systems. We propose two layer 2 (L2) traceback systems, switch-SPIE and COTraSE, which adopt different approaches to logging based L2 traceback for switched ethernet. Whilst message traceback in spite of spoofing is interesting and perhaps more challenging than at first seems, one might say that it is rather academic. Logging of network data is a controversial and unpopular notion and network administrators don't want the added installation and maintenance costs. However, European Parliament Directive 2006/24/EC requires that providers of publicly available electronic communications networks retain data in a form similar to mobile telephony call records, from April 2009 and for periods of up to 2 years. This thesis identifies the relevance of work in all areas of message traceback to the European data retention legislation. In the final part of this thesis we apply our experiences with L2 traceback, together with our definitions and classification of spoofing to discuss the issues that EU data retention implementations should consider. It is possible to 'do logging right' and even safeguard user privacy. However this can only occur if we fully understand the technical challenges, requiring much further work in all areas of logging based, message traceback systems. We have no choice but to dance with the devil.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore