54,333 research outputs found

    Emulating Digital Logic using Transputer Networks (Very High Parallelism = Simplicity = Performance)

    Get PDF
    Modern VLSI technology has changed the economic rules by which the balance between processing power, memory and communications is decided in computing systems. This will have a profound impact on the design rules for the controlling software. In particular, the criteria for judging efficiency of the algorithms will be somewhat different. This paper explores some of these implications through the development of highly parallel and highly distributable algorithms based on occam and transputer networks. The major results reported are a new simplicity for software designs, a corresponding ability to reason (formally and informally) about their properties, the reusability of their components and some real performance figures which demonstrate their practicality. Some guidelines to assist in these designs are also given. As a vehicle for discussion, an interactive simulator is developed for checking the functional and timing characteristics of digital logic circuits of arbitrary complexity

    Rewriting Logic Semantics of a Plan Execution Language

    Get PDF
    The Plan Execution Interchange Language (PLEXIL) is a synchronous language developed by NASA to support autonomous spacecraft operations. In this paper, we propose a rewriting logic semantics of PLEXIL in Maude, a high-performance logical engine. The rewriting logic semantics is by itself a formal interpreter of the language and can be used as a semantic benchmark for the implementation of PLEXIL executives. The implementation in Maude has the additional benefit of making available to PLEXIL designers and developers all the formal analysis and verification tools provided by Maude. The formalization of the PLEXIL semantics in rewriting logic poses an interesting challenge due to the synchronous nature of the language and the prioritized rules defining its semantics. To overcome this difficulty, we propose a general procedure for simulating synchronous set relations in rewriting logic that is sound and, for deterministic relations, complete. We also report on two issues at the design level of the original PLEXIL semantics that were identified with the help of the executable specification in Maude
    • 

    corecore