981 research outputs found

    The set of autotopisms of partial Latin squares

    Get PDF
    Symmetries of a partial Latin square are determined by its autotopism group. Analogously to the case of Latin squares, given an isotopism Θ\Theta, the cardinality of the set PLSΘ\mathcal{PLS}_{\Theta} of partial Latin squares which are invariant under Θ\Theta only depends on the conjugacy class of the latter, or, equivalently, on its cycle structure. In the current paper, the cycle structures of the set of autotopisms of partial Latin squares are characterized and several related properties studied. It is also seen that the cycle structure of Θ\Theta determines the possible sizes of the elements of PLSΘ\mathcal{PLS}_{\Theta} and the number of those partial Latin squares of this set with a given size. Finally, it is generalized the traditional notion of partial Latin square completable to a Latin square.Comment: 20 pages, 4 table

    Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices

    Get PDF
    Absolutely Maximally Entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible partitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME, namely their relation to tensors that can be understood as unitary transformations in every of its bi-partitions. We call this property multi-unitarity.Comment: 18 pages, 2 figures. Comments are very welcom

    Algebraic Structures and Variations: From Latin Squares to Lie Quasigroups

    Get PDF
    In this Master\u27s Thesis we give an overview of the algebraic structure of sets with a single binary operation. Specifically, we are interested in quasigroups and loops and their historical connection with Latin squares; considering them in both finite and continuous variations. We also consider various mappings between such algebraic objects and utilize matrix representations to give a negative conclusion to a question concerning isotopies in the case of quasigroups

    Symmetry Regularization

    Get PDF
    The properties of a representation, such as smoothness, adaptability, generality, equivari- ance/invariance, depend on restrictions imposed during learning. In this paper, we propose using data symmetries, in the sense of equivalences under transformations, as a means for learning symmetry- adapted representations, i.e., representations that are equivariant to transformations in the original space. We provide a sufficient condition to enforce the representation, for example the weights of a neural network layer or the atoms of a dictionary, to have a group structure and specifically the group structure in an unlabeled training set. By reducing the analysis of generic group symmetries to per- mutation symmetries, we devise an analytic expression for a regularization scheme and a permutation invariant metric on the representation space. Our work provides a proof of concept on why and how to learn equivariant representations, without explicit knowledge of the underlying symmetries in the data.This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216
    corecore