101 research outputs found

    An Exponential Lower Bound for Cut Sparsifiers in Planar Graphs

    Get PDF
    Given an edge-weighted graph G with a set Q of k terminals, a mimicking network is a graph with the same set of terminals that exactly preserves the sizes of minimum cuts between any partition of the terminals. A natural question in the area of graph compression is to provide as small mimicking networks as possible for input graph G being either an arbitrary graph or coming from a specific graph class. In this note we show an exponential lower bound for cut mimicking networks in planar graphs: there are edge-weighted planar graphs with k terminals that require 2^(k-2) edges in any mimicking network. This nearly matches an upper bound of O(k * 2^(2k)) of Krauthgamer and Rika [SODA 2013, arXiv:1702.05951] and is in sharp contrast with the O(k^2) upper bound under the assumption that all terminals lie on a single face [Goranci, Henzinger, Peng, arXiv:1702.01136]. As a side result we show a hard instance for the double-exponential upper bounds given by Hagerup, Katajainen, Nishimura, and Ragde [JCSS 1998], Khan and Raghavendra [IPL 2014], and Chambers and Eppstein [JGAA 2013]

    Improved guarantees for Vertex Sparsification in planar graphs

    Get PDF
    Graph Sparsification aims at compressing large graphs into smaller ones while (approximately) preserving important characteristics of the input graph. In this work we study Vertex Sparsifiers, i.e., sparsifiers whose goal is to reduce the number of vertices. Given a weighted graph G=(V,E), and a terminal set K with |K|=k, a quality-q vertex cut sparsifier of G is a graph H with K contained in V_H that preserves the value of minimum cuts separating any bipartition of K, up to a factor of q. We show that planar graphs with all the k terminals lying on the same face admit quality-1 vertex cut sparsifier of size O(k^2) that are also planar. Our result extends to vertex flow and distance sparsifiers. It improves the previous best known bound of O(k^2 2^(2k)) for cut and flow sparsifiers by an exponential factor, and matches an Omega(k^2) lower-bound for this class of graphs. We also study vertex reachability sparsifiers for directed graphs. Given a digraph G=(V,E) and a terminal set K, a vertex reachability sparsifier of G is a digraph H=(V_H,E_H), K contained in V_H that preserves all reachability information among terminal pairs. We introduce the notion of reachability-preserving minors, i.e., we require H to be a minor of G. Among others, for general planar digraphs, we construct reachability-preserving minors of size O(k^2 log^2 k). We complement our upper-bound by showing that there exists an infinite family of acyclic planar digraphs such that any reachability-preserving minor must have Omega(k^2) vertices

    Steiner Point Removal with Distortion O(logk)O(\log k)

    Full text link
    In the Steiner point removal (SPR) problem, we are given a weighted graph G=(V,E)G=(V,E) and a set of terminals KVK\subset V of size kk. The objective is to find a minor MM of GG with only the terminals as its vertex set, such that the distance between the terminals will be preserved up to a small multiplicative distortion. Kamma, Krauthgamer and Nguyen [KKN15] used a ball-growing algorithm with exponential distributions to show that the distortion is at most O(log5k)O(\log^5 k). Cheung [Che17] improved the analysis of the same algorithm, bounding the distortion by O(log2k)O(\log^2 k). We improve the analysis of this ball-growing algorithm even further, bounding the distortion by O(logk)O(\log k)

    Improved guarantees for vertex sparsification in planar graphs

    Get PDF

    Degree-3 Treewidth Sparsifiers

    Full text link
    We study treewidth sparsifiers. Informally, given a graph GG of treewidth kk, a treewidth sparsifier HH is a minor of GG, whose treewidth is close to kk, V(H)|V(H)| is small, and the maximum vertex degree in HH is bounded. Treewidth sparsifiers of degree 33 are of particular interest, as routing on node-disjoint paths, and computing minors seems easier in sub-cubic graphs than in general graphs. In this paper we describe an algorithm that, given a graph GG of treewidth kk, computes a topological minor HH of GG such that (i) the treewidth of HH is Ω(k/polylog(k))\Omega(k/\text{polylog}(k)); (ii) V(H)=O(k4)|V(H)| = O(k^4); and (iii) the maximum vertex degree in HH is 33. The running time of the algorithm is polynomial in V(G)|V(G)| and kk. Our result is in contrast to the known fact that unless NPcoNP/polyNP \subseteq coNP/{\sf poly}, treewidth does not admit polynomial-size kernels. One of our key technical tools, which is of independent interest, is a construction of a small minor that preserves node-disjoint routability between two pairs of vertex subsets. This is closely related to the open question of computing small good-quality vertex-cut sparsifiers that are also minors of the original graph.Comment: Extended abstract to appear in Proceedings of ACM-SIAM SODA 201

    Mimicking Networks and Succinct Representations of Terminal Cuts

    Full text link
    Given a large edge-weighted network GG with kk terminal vertices, we wish to compress it and store, using little memory, the value of the minimum cut (or equivalently, maximum flow) between every bipartition of terminals. One appealing methodology to implement a compression of GG is to construct a \emph{mimicking network}: a small network GG' with the same kk terminals, in which the minimum cut value between every bipartition of terminals is the same as in GG. This notion was introduced by Hagerup, Katajainen, Nishimura, and Ragde [JCSS '98], who proved that such GG' of size at most 22k2^{2^k} always exists. Obviously, by having access to the smaller network GG', certain computations involving cuts can be carried out much more efficiently. We provide several new bounds, which together narrow the previously known gap from doubly-exponential to only singly-exponential, both for planar and for general graphs. Our first and main result is that every kk-terminal planar network admits a mimicking network GG' of size O(k222k)O(k^2 2^{2k}), which is moreover a minor of GG. On the other hand, some planar networks GG require E(G)Ω(k2)|E(G')| \ge \Omega(k^2). For general networks, we show that certain bipartite graphs only admit mimicking networks of size V(G)2Ω(k)|V(G')| \geq 2^{\Omega(k)}, and moreover, every data structure that stores the minimum cut value between all bipartitions of the terminals must use 2Ω(k)2^{\Omega(k)} machine words
    corecore