4,247 research outputs found

    Casual Information Visualization on Exploring Spatiotemporal Data

    Get PDF
    The goal of this thesis is to study how the diverse data on the Web which are familiar to everyone can be visualized, and with a special consideration on their spatial and temporal information. We introduce novel approaches and visualization techniques dealing with different types of data contents: interactively browsing large amount of tags linking with geospace and time, navigating and locating spatiotemporal photos or videos in collections, and especially, providing visual supports for the exploration of diverse Web contents on arbitrary webpages in terms of augmented Web browsing

    The Interaction Space of a Multi-Device, Multi-User Music Experience

    Get PDF
    The increasing interoperability between electronic devices in our everyday life offers great opportunities for ubiquitous computing in non-work settings. There are however aspects of the interaction space of interconnected devices, that we do not yet fully understand. This prohibits us from utilizing the full potential of the devices and the digital ecosystems emerging around them. We have explored the interaction space created around multi-device systems in a non-work setting, by developing a functional prototype of a multi-device music player and evaluating it in three different real-life contexts. The evaluations had a total running time of 12 hours and involved approximately 60 testpersons. Qualitative results collected throughout the evaluations provide insight into issues regarding interaction design of multi-device systems with multiple simultaneous users. Through a discussion of the results we point out areas of interest and design issues, revealed during the evaluations. Author Keywords Digital ecosystems; ubiquitous computing; distributed interfaces; music player; interaction desig

    A Content Analysis-Based Approach to Explore Simulation Verification and Identify Its Current Challenges

    Get PDF
    Verification is a crucial process to facilitate the identification and removal of errors within simulations. This study explores semantic changes to the concept of simulation verification over the past six decades using a data-supported, automated content analysis approach. We collect and utilize a corpus of 4,047 peer-reviewed Modeling and Simulation (M&S) publications dealing with a wide range of studies of simulation verification from 1963 to 2015. We group the selected papers by decade of publication to provide insights and explore the corpus from four perspectives: (i) the positioning of prominent concepts across the corpus as a whole; (ii) a comparison of the prominence of verification, validation, and Verification and Validation (V&V) as separate concepts; (iii) the positioning of the concepts specifically associated with verification; and (iv) an evaluation of verification\u27s defining characteristics within each decade. Our analysis reveals unique characterizations of verification in each decade. The insights gathered helped to identify and discuss three categories of verification challenges as avenues of future research, awareness, and understanding for researchers, students, and practitioners. These categories include conveying confidence and maintaining ease of use; techniques\u27 coverage abilities for handling increasing simulation complexities; and new ways to provide error feedback to model users

    Decoupling User Interface Design Using Libraries of Reusable Components

    Get PDF
    The integration of electronic and mechanical hardware, software and interaction design presents a challenging design space for researchers developing physical user interfaces and interactive artifacts. Currently in the academic research community, physical user interfaces and interactive artifacts are predominantly designed and prototyped either as one-off instances from the ground up, or using functionally rich hardware toolkits and prototyping systems. During this prototyping phase, undertaking an integral design of the interface or interactive artifact’s electronic hardware is frequently constraining due to the tight couplings between the different design realms and the typical need for iterations as the design matures. Several current toolkit designs have consequently embraced component-sharing and component-swapping modular designs with a view to extending flexibility and improving researcher freedom by disentangling and softening the cause-effect couplings. Encouraged by early successes of these toolkits, this research work strives to further enhance these freedoms by pursuing an alternative style and dimension of hardware modularity. Another motivation is our goal to facilitate the design and development of certain classes of interfaces and interactive artifacts for which current electronic design approaches are argued to be restrictively constraining (e.g., relating to scale and complexity). Unfortunately, this goal of a new platform architecture is met with conceptual and technical challenges on the embedded system networking front. In response, this research investigates and extends a growing field of multi-module distributed embedded systems. We identify and characterize a sub-class of these systems, calling them embedded aggregates. We then outline and develop a framework for realizing the embedded aggregate class of systems. Toward this end, this thesis examines several architectures, topologies and communication protocols, making the case for and substantial steps toward the development of a suite of networking protocols and control algorithms to support embedded aggregates. We define a set of protocols, mechanisms and communication packets that collectively form the underlying framework for the aggregates. Following the aggregates design, we develop blades and tiles to support user interface researchers

    Ontology based data warehousing for mining of heterogeneous and multidimensional data sources

    Get PDF
    Heterogeneous and multidimensional big-data sources are virtually prevalent in all business environments. System and data analysts are unable to fast-track and access big-data sources. A robust and versatile data warehousing system is developed, integrating domain ontologies from multidimensional data sources. For example, petroleum digital ecosystems and digital oil field solutions, derived from big-data petroleum (information) systems, are in increasing demand in multibillion dollar resource businesses worldwide. This work is recognized by Industrial Electronic Society of IEEE and appeared in more than 50 international conference proceedings and journals

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    corecore