114 research outputs found

    Low density parity check coding: applications and new challenges

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    Diagnosis of weaknesses in modern error correction codes: a physics approach

    Full text link
    One of the main obstacles to the wider use of the modern error-correction codes is that, due to the complex behavior of their decoding algorithms, no systematic method which would allow characterization of the Bit-Error-Rate (BER) is known. This is especially true at the weak noise where many systems operate and where coding performance is difficult to estimate because of the diminishingly small number of errors. We show how the instanton method of physics allows one to solve the problem of BER analysis in the weak noise range by recasting it as a computationally tractable minimization problem.Comment: 9 pages, 8 figure

    Mathematical approach to channel codes with a diagonal matrix structure

    Get PDF
    Digital communications have now become a fundamental part of modern society. In communications, channel coding is an effective way to reduce the information rate down to channel capacity so that the information can be transmitted reliably through the channel. This thesis is devoted to studying the mathematical theory and analysis of channel codes that possess a useful diagonal structure in the parity-check and generator matrices. The first aspect of these codes that is studied is the ability to describe the parity-check matrix of a code with sliding diagonal structure using polynomials. Using this framework, an efficient new method is proposed to obtain a generator matrix G from certain types of parity-check matrices with a so-called defective cyclic block structure. By the nature of this method, G can also be completely described by a polynomial, which leads to efficient encoder design using shift registers. In addition, there is no need for the matrices to be in systematic form, thus avoiding the need for Gaussian elimination. Following this work, we proceed to explore some of the properties of diagonally structured lowdensity parity-check (LDPC) convolutional codes. LDPC convolutional codes have been shown to be capable of achieving the same capacity-approaching performance as LDPC block codes with iterative message-passing decoding. The first crucial property studied is the minimum free distance of LDPC convolutional code ensembles, an important parameter contributing to the error-correcting capability of the code. Here, asymptotic methods are used to form lower bounds on the ratio of the free distance to constraint length for several ensembles of asymptotically good, protograph-based LDPC convolutional codes. Further, it is shown that this ratio of free distance to constraint length for such LDPC convolutional codes exceeds the ratio of minimum distance to block length for corresponding LDPC block codes. Another interesting property of these codes is the way in which the structure affects the performance in the infamous error floor (which occurs at high signal to noise ratio) of the bit error rate curve. It has been suggested that “near-codewords” may be a significant factor affecting decoding failures of LDPC codes over an additive white Gaussian noise (AWGN) channel. A near-codeword is a sequence that satisfies almost all of the check equations. These nearcodewords can be associated with so-called ‘trapping sets’ that exist in the Tanner graph of a code. In the final major contribution of the thesis, trapping sets of protograph-based LDPC convolutional codes are analysed. Here, asymptotic methods are used to calculate a lower bound for the trapping set growth rates for several ensembles of asymptotically good protograph-based LDPC convolutional codes. This value can be used to predict where the error floor will occur for these codes under iterative message-passing decoding

    Novel LDPC coding and decoding strategies: design, analysis, and algorithms

    Get PDF
    In this digital era, modern communication systems play an essential part in nearly every aspect of life, with examples ranging from mobile networks and satellite communications to Internet and data transfer. Unfortunately, all communication systems in a practical setting are noisy, which indicates that we can either improve the physical characteristics of the channel or find a possible systematical solution, i.e. error control coding. The history of error control coding dates back to 1948 when Claude Shannon published his celebrated work “A Mathematical Theory of Communication”, which built a framework for channel coding, source coding and information theory. For the first time, we saw evidence for the existence of channel codes, which enable reliable communication as long as the information rate of the code does not surpass the so-called channel capacity. Nevertheless, in the following 60 years none of the codes have been proven closely to approach the theoretical bound until the arrival of turbo codes and the renaissance of LDPC codes. As a strong contender of turbo codes, the advantages of LDPC codes include parallel implementation of decoding algorithms and, more crucially, graphical construction of codes. However, there are also some drawbacks to LDPC codes, e.g. significant performance degradation due to the presence of short cycles or very high decoding latency. In this thesis, we will focus on the practical realisation of finite-length LDPC codes and devise algorithms to tackle those issues. Firstly, rate-compatible (RC) LDPC codes with short/moderate block lengths are investigated on the basis of optimising the graphical structure of the tanner graph (TG), in order to achieve a variety of code rates (0.1 < R < 0.9) by only using a single encoder-decoder pair. As is widely recognised in the literature, the presence of short cycles considerably reduces the overall performance of LDPC codes which significantly limits their application in communication systems. To reduce the impact of short cycles effectively for different code rates, algorithms for counting short cycles and a graph-related metric called Extrinsic Message Degree (EMD) are applied with the development of the proposed puncturing and extension techniques. A complete set of simulations are carried out to demonstrate that the proposed RC designs can largely minimise the performance loss caused by puncturing or extension. Secondly, at the decoding end, we study novel decoding strategies which compensate for the negative effect of short cycles by reweighting part of the extrinsic messages exchanged between the nodes of a TG. The proposed reweighted belief propagation (BP) algorithms aim to implement efficient decoding, i.e. accurate signal reconstruction and low decoding latency, for LDPC codes via various design methods. A variable factor appearance probability belief propagation (VFAP-BP) algorithm is proposed along with an improved version called a locally-optimized reweighted (LOW)-BP algorithm, both of which can be employed to enhance decoding performance significantly for regular and irregular LDPC codes. More importantly, the optimisation of reweighting parameters only takes place in an offline stage so that no additional computational complexity is required during the real-time decoding process. Lastly, two iterative detection and decoding (IDD) receivers are presented for multiple-input multiple-output (MIMO) systems operating in a spatial multiplexing configuration. QR decomposition (QRD)-type IDD receivers utilise the proposed multiple-feedback (MF)-QRD or variable-M (VM)-QRD detection algorithm with a standard BP decoding algorithm, while knowledge-aided (KA)-type receivers are equipped with a simple soft parallel interference cancellation (PIC) detector and the proposed reweighted BP decoders. In the uncoded scenario, the proposed MF-QRD and VM-QRD algorithms are shown to approach optimal performance, yet require a reduced computational complexity. In the LDPC-coded scenario, simulation results have illustrated that the proposed QRD-type IDD receivers can offer near-optimal performance after a small number of detection/decoding iterations and the proposed KA-type IDD receivers significantly outperform receivers using alternative decoding algorithms, while requiring similar decoding complexity

    Fountain codes: performance analysis and optimization

    Get PDF
    The fountain coding principle provides a framework for efficient and reliable data transmission techniques over erasure channels, such as file transmission over the Internet. This thesis presents topics related to the optimisation and performance analysis for different settings where fountain coding methods are applied. We start by reviewing the fountain coding principle on which our own contributions are based. Strategies for both elastic and streaming traffic are considered. The coding schemes are typically modelled as stochastic processes and we analyse them using well-known tools, such as Markov chains and fixed-point iteration. Some of the schemes realise the principles of an ideal digital fountain, while the other sacrifice some characteristics, such as time-independence and the statistical equivalence of the encoded packets. The description of our own work is divided into two parts. The first part begins by addressing the optimisation of the degree distribution of LT coding, the first universal fountain coding method, for small file sizes. We present exact analysis for LT codes of very small size with some novel results. A simulation based method is presented for the analysis and optimisation of longer codes, up to hundreds of source blocks. We further present a method in which a random linear fountain code is divided into parts and conduct a performance analysis of the system. We propose and analyse two different strategies to overcome the performance degradation caused by the division. The first part ends with the description and optimisation of a systematic, sequential coding scheme in which the sender makes greedy choices concerning the repair packet structure on the basis of his belief about the state of the receiver. We present repair packet degree sequences which result in a low required overhead. In the second part we will address the problem of achieving a low residual erasure probability for streaming traffic using packet erasure correction. The methods are based on a sliding window. Four different methods are presented differing in how the repair packets are constructed. These codes further differ in the repair packet sending strategy; one code always sends a repair packet deterministically after a window movement, while the others send the repair packets probabilistically. We conclude that methods inspired by fountain coding provide efficient, yet simple, coding strategies for implementing data transfer in many settings

    Unreliable and resource-constrained decoding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 185-213).Traditional information theory and communication theory assume that decoders are noiseless and operate without transient or permanent faults. Decoders are also traditionally assumed to be unconstrained in physical resources like material, memory, and energy. This thesis studies how constraining reliability and resources in the decoder limits the performance of communication systems. Five communication problems are investigated. Broadly speaking these are communication using decoders that are wiring cost-limited, that are memory-limited, that are noisy, that fail catastrophically, and that simultaneously harvest information and energy. For each of these problems, fundamental trade-offs between communication system performance and reliability or resource consumption are established. For decoding repetition codes using consensus decoding circuits, the optimal tradeoff between decoding speed and quadratic wiring cost is defined and established. Designing optimal circuits is shown to be NP-complete, but is carried out for small circuit size. The natural relaxation to the integer circuit design problem is shown to be a reverse convex program. Random circuit topologies are also investigated. Uncoded transmission is investigated when a population of heterogeneous sources must be categorized due to decoder memory constraints. Quantizers that are optimal for mean Bayes risk error, a novel fidelity criterion, are designed. Human decision making in segregated populations is also studied with this framework. The ratio between the costs of false alarms and missed detections is also shown to fundamentally affect the essential nature of discrimination. The effect of noise on iterative message-passing decoders for low-density parity check (LDPC) codes is studied. Concentration of decoding performance around its average is shown to hold. Density evolution equations for noisy decoders are derived. Decoding thresholds degrade smoothly as decoder noise increases, and in certain cases, arbitrarily small final error probability is achievable despite decoder noisiness. Precise information storage capacity results for reliable memory systems constructed from unreliable components are also provided. Limits to communicating over systems that fail at random times are established. Communication with arbitrarily small probability of error is not possible, but schemes that optimize transmission volume communicated at fixed maximum message error probabilities are determined. System state feedback is shown not to improve performance. For optimal communication with decoders that simultaneously harvest information and energy, a coding theorem that establishes the fundamental trade-off between the rates at which energy and reliable information can be transmitted over a single line is proven. The capacity-power function is computed for several channels; it is non-increasing and concave.by Lav R. Varshney.Ph.D

    Multiple Parallel Concatenated Gallager Codes and Their Applications

    Get PDF
    Due to the increasing demand of high data rate of modern wireless communications, there is a significant interest in error control coding. It now plays a significant role in digital communication systems in order to overcome the weaknesses in communication channels. This thesis presents a comprehensive investigation of a class of error control codes known as Multiple Parallel Concatenated Gallager Codes (MPCGCs) obtained by the parallel concatenation of well-designed LDPC codes. MPCGCs are constructed by breaking a long and high complexity of conventional single LDPC code into three or four smaller and lower complexity LDPC codes. This design of MPCGCs is simplified as the option of selecting the component codes completely at random based on a single parameter of Mean Column Weight (MCW). MPCGCs offer flexibility and scope for improving coding performance in theoretical and practical implementation. The performance of MPCGCs is explored by evaluating these codes for both AWGN and flat Rayleigh fading channels and investigating the puncturing of these codes by a proposed novel and efficient puncturing methods for improving the coding performance. Another investigating in the deployment of MPCGCs by enhancing the performance of WiMAX system. The bit error performances are compared and the results confirm that the proposed MPCGCs-WiMAX based IEEE 802.16 standard physical layer system provides better gain compared to the single conventional LDPC-WiMAX system. The incorporation of Quasi-Cyclic QC-LDPC codes in the MPCGC structure (called QC-MPCGC) is shown to improve the overall BER performance of MPCGCs with reduced overall decoding complexity and improved flexibility by using Layered belief propagation decoding instead of the sum-product algorithm (SPA). A proposed MIMO-MPCGC structure with both a 2X2 MIMO and 2X4 MIMO configurations is developed in this thesis and shown to improve the BER performance over fading channels over the conventional LDPC structure
    • 

    corecore