103,976 research outputs found

    An Exploration of Enterprise Architecture Research

    Get PDF
    Management of the enterprise architecture has become increasingly recognized as a crucial part of both business and IT management. Still, a common understanding and methodological consistency seems far from being developed. Acknowledging the significant role of research in moving the development process along, this article employs different bibliometric methods, complemented by an extensive qualitative interpretation of the research field, to provide a unique overview of the enterprise architecture literature. After answering our research questions about the collaboration via co-authorships, the intellectual structure of the research field and its most influential works, and the principal themes of research, we propose an agenda for future research based on the findings from the above analyses and their comparison to empirical insights from the literature. In particular, our study finds a considerable degree of co-authorship clustering and a positive impact of the extent of co-authorship on the diffusion of works on enterprise architecture. In addition, this article identifies three major research streams and shows that research to date has revolved around specific themes, while some of high practical relevance receive minor attention. Hence, the contribution of our study is manifold and offers support for researchers and practitioners alike

    Service-Oriented Architecture for Space Exploration Robotic Rover Systems

    Full text link
    Currently, industrial sectors are transforming their business processes into e-services and component-based architectures to build flexible, robust, and scalable systems, and reduce integration-related maintenance and development costs. Robotics is yet another promising and fast-growing industry that deals with the creation of machines that operate in an autonomous fashion and serve for various applications including space exploration, weaponry, laboratory research, and manufacturing. It is in space exploration that the most common type of robots is the planetary rover which moves across the surface of a planet and conducts a thorough geological study of the celestial surface. This type of rover system is still ad-hoc in that it incorporates its software into its core hardware making the whole system cohesive, tightly-coupled, more susceptible to shortcomings, less flexible, hard to be scaled and maintained, and impossible to be adapted to other purposes. This paper proposes a service-oriented architecture for space exploration robotic rover systems made out of loosely-coupled and distributed web services. The proposed architecture consists of three elementary tiers: the client tier that corresponds to the actual rover; the server tier that corresponds to the web services; and the middleware tier that corresponds to an Enterprise Service Bus which promotes interoperability between the interconnected entities. The niche of this architecture is that rover's software components are decoupled and isolated from the rover's body and possibly deployed at a distant location. A service-oriented architecture promotes integrate-ability, scalability, reusability, maintainability, and interoperability for client-to-server communication.Comment: LACSC - Lebanese Association for Computational Sciences, http://www.lacsc.org/; International Journal of Science & Emerging Technologies (IJSET), Vol. 3, No. 2, February 201

    Research, Design, and Validation of a Normative Enterprise Architecture for Guiding End-to-End, Emergency Response Services

    Get PDF
    The purpose of this paper is to provide a synthesis and overview of a multipart research study involving the design, exploration, and validation of an enterprise architecture and framework. The methodology includes the use of two case studies and validation through a national conference. While the authors have reported on the elements of this research, only recently has its completion allowed for this synthesis and overview of the process and outcomes. A normative architecture, developed from comparative cases involving San Mateo County and Mayo Clinic Emergency Medical Services systems, provides a collection of characteristics that guides an emergency response system to operate as a high performance system. At a national symposium, academics and practitioners involved in promoting effective emergency response information systems provided validation for the architecture and next steps for enhancing emergency response information systems. Normative architecture characteristics and symposium findings are integrated into a framework that offers an enterprise approach for delivering time-critical emergency response services

    Business Intelligence Modeling in Launch Operations

    Get PDF
    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems. The future of business intelligence of space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page
    corecore