2,067 research outputs found

    Occam's Gates

    Full text link
    We present a complimentary objective for training recurrent neural networks (RNN) with gating units that helps with regularization and interpretability of the trained model. Attention-based RNN models have shown success in many difficult sequence to sequence classification problems with long and short term dependencies, however these models are prone to overfitting. In this paper, we describe how to regularize these models through an L1 penalty on the activation of the gating units, and show that this technique reduces overfitting on a variety of tasks while also providing to us a human-interpretable visualization of the inputs used by the network. These tasks include sentiment analysis, paraphrase recognition, and question answering.Comment: In review at NIP

    Bayesian LSTMs in medicine

    Full text link
    The medical field stands to see significant benefits from the recent advances in deep learning. Knowing the uncertainty in the decision made by any machine learning algorithm is of utmost importance for medical practitioners. This study demonstrates the utility of using Bayesian LSTMs for classification of medical time series. Four medical time series datasets are used to show the accuracy improvement Bayesian LSTMs provide over standard LSTMs. Moreover, we show cherry-picked examples of confident and uncertain classifications of the medical time series. With simple modifications of the common practice for deep learning, significant improvements can be made for the medical practitioner and patient.Comment: 11 pages, 8 figure

    Learning Intrinsic Sparse Structures within Long Short-Term Memory

    Full text link
    Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden states, cell states and outputs. Independently reducing the sizes of basic structures can result in inconsistent dimensions among them, and consequently, end up with invalid LSTM units. To overcome the problem, we propose Intrinsic Sparse Structures (ISS) in LSTMs. Removing a component of ISS will simultaneously decrease the sizes of all basic structures by one and thereby always maintain the dimension consistency. By learning ISS within LSTM units, the obtained LSTMs remain regular while having much smaller basic structures. Based on group Lasso regularization, our method achieves 10.59x speedup without losing any perplexity of a language modeling of Penn TreeBank dataset. It is also successfully evaluated through a compact model with only 2.69M weights for machine Question Answering of SQuAD dataset. Our approach is successfully extended to non- LSTM RNNs, like Recurrent Highway Networks (RHNs). Our source code is publicly available at https://github.com/wenwei202/iss-rnnsComment: Published in ICLR 2018 ( the Sixth International Conference on Learning Representations

    Strongly-Typed Recurrent Neural Networks

    Full text link
    Recurrent neural networks are increasing popular models for sequential learning. Unfortunately, although the most effective RNN architectures are perhaps excessively complicated, extensive searches have not found simpler alternatives. This paper imports ideas from physics and functional programming into RNN design to provide guiding principles. From physics, we introduce type constraints, analogous to the constraints that forbids adding meters to seconds. From functional programming, we require that strongly-typed architectures factorize into stateless learnware and state-dependent firmware, reducing the impact of side-effects. The features learned by strongly-typed nets have a simple semantic interpretation via dynamic average-pooling on one-dimensional convolutions. We also show that strongly-typed gradients are better behaved than in classical architectures, and characterize the representational power of strongly-typed nets. Finally, experiments show that, despite being more constrained, strongly-typed architectures achieve lower training and comparable generalization error to classical architectures.Comment: 10 pages, final version, ICML 201

    Deep, Convolutional, and Recurrent Models for Human Activity Recognition using Wearables

    Full text link
    Human activity recognition (HAR) in ubiquitous computing is beginning to adopt deep learning to substitute for well-established analysis techniques that rely on hand-crafted feature extraction and classification techniques. From these isolated applications of custom deep architectures it is, however, difficult to gain an overview of their suitability for problems ranging from the recognition of manipulative gestures to the segmentation and identification of physical activities like running or ascending stairs. In this paper we rigorously explore deep, convolutional, and recurrent approaches across three representative datasets that contain movement data captured with wearable sensors. We describe how to train recurrent approaches in this setting, introduce a novel regularisation approach, and illustrate how they outperform the state-of-the-art on a large benchmark dataset. Across thousands of recognition experiments with randomly sampled model configurations we investigate the suitability of each model for different tasks in HAR, explore the impact of hyperparameters using the fANOVA framework, and provide guidelines for the practitioner who wants to apply deep learning in their problem setting.Comment: Extended version has been accepted for publication at International Joint Conference on Artificial Intelligence (IJCAI

    Learning Sparse Structured Ensembles with SG-MCMC and Network Pruning

    Full text link
    An ensemble of neural networks is known to be more robust and accurate than an individual network, however usually with linearly-increased cost in both training and testing. In this work, we propose a two-stage method to learn Sparse Structured Ensembles (SSEs) for neural networks. In the first stage, we run SG-MCMC with group sparse priors to draw an ensemble of samples from the posterior distribution of network parameters. In the second stage, we apply weight-pruning to each sampled network and then perform retraining over the remained connections. In this way of learning SSEs with SG-MCMC and pruning, we not only achieve high prediction accuracy since SG-MCMC enhances exploration of the model-parameter space, but also reduce memory and computation cost significantly in both training and testing of NN ensembles. This is thoroughly evaluated in the experiments of learning SSE ensembles of both FNNs and LSTMs. For example, in LSTM based language modeling (LM), we obtain 21% relative reduction in LM perplexity by learning a SSE of 4 large LSTM models, which has only 30% of model parameters and 70% of computations in total, as compared to the baseline large LSTM LM. To the best of our knowledge, this work represents the first methodology and empirical study of integrating SG-MCMC, group sparse prior and network pruning together for learning NN ensembles

    Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations

    Full text link
    We propose zoneout, a novel method for regularizing RNNs. At each timestep, zoneout stochastically forces some hidden units to maintain their previous values. Like dropout, zoneout uses random noise to train a pseudo-ensemble, improving generalization. But by preserving instead of dropping hidden units, gradient information and state information are more readily propagated through time, as in feedforward stochastic depth networks. We perform an empirical investigation of various RNN regularizers, and find that zoneout gives significant performance improvements across tasks. We achieve competitive results with relatively simple models in character- and word-level language modelling on the Penn Treebank and Text8 datasets, and combining with recurrent batch normalization yields state-of-the-art results on permuted sequential MNIST.Comment: David Krueger and Tegan Maharaj contributed equally to this wor

    On the State of the Art of Evaluation in Neural Language Models

    Full text link
    Ongoing innovations in recurrent neural network architectures have provided a steady influx of apparently state-of-the-art results on language modelling benchmarks. However, these have been evaluated using differing code bases and limited computational resources, which represent uncontrolled sources of experimental variation. We reevaluate several popular architectures and regularisation methods with large-scale automatic black-box hyperparameter tuning and arrive at the somewhat surprising conclusion that standard LSTM architectures, when properly regularised, outperform more recent models. We establish a new state of the art on the Penn Treebank and Wikitext-2 corpora, as well as strong baselines on the Hutter Prize dataset

    IndyLSTMs: Independently Recurrent LSTMs

    Full text link
    We introduce Independently Recurrent Long Short-term Memory cells: IndyLSTMs. These differ from regular LSTM cells in that the recurrent weights are not modeled as a full matrix, but as a diagonal matrix, i.e.\ the output and state of each LSTM cell depends on the inputs and its own output/state, as opposed to the input and the outputs/states of all the cells in the layer. The number of parameters per IndyLSTM layer, and thus the number of FLOPS per evaluation, is linear in the number of nodes in the layer, as opposed to quadratic for regular LSTM layers, resulting in potentially both smaller and faster models. We evaluate their performance experimentally by training several models on the popular \iamondb and CASIA online handwriting datasets, as well as on several of our in-house datasets. We show that IndyLSTMs, despite their smaller size, consistently outperform regular LSTMs both in terms of accuracy per parameter, and in best accuracy overall. We attribute this improved performance to the IndyLSTMs being less prone to overfitting.Comment: 8 pages, submitted to ICDAR 201

    A Simple LSTM model for Transition-based Dependency Parsing

    Full text link
    We present a simple LSTM-based transition-based dependency parser. Our model is composed of a single LSTM hidden layer replacing the hidden layer in the usual feed-forward network architecture. We also propose a new initialization method that uses the pre-trained weights from a feed-forward neural network to initialize our LSTM-based model. We also show that using dropout on the input layer has a positive effect on performance. Our final parser achieves a 93.06% unlabeled and 91.01% labeled attachment score on the Penn Treebank. We additionally replace LSTMs with GRUs and Elman units in our model and explore the effectiveness of our initialization method on individual gates constituting all three types of RNN units
    • …
    corecore